Filtros : "Journal of Dynamics and Differential Equations" "TEORIA DA BIFURCAÇÃO" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold e OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, v. 28, n. 3/4, p. 1357–1391, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9456-8. Acesso em: 09 nov. 2025.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: TEORIA DA BIFURCAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e ROCHA, Carlos. Reducible Volterra and Levin–Nohel retarded equations with infinite delay. Journal of Dynamics and Differential Equations, v. 22, n. 3, p. 509-532, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9177-y. Acesso em: 09 nov. 2025.
    • APA

      Oliva, W. M., & Rocha, C. (2010). Reducible Volterra and Levin–Nohel retarded equations with infinite delay. Journal of Dynamics and Differential Equations, 22( 3), 509-532. doi:10.1007/s10884-010-9177-y
    • NLM

      Oliva WM, Rocha C. Reducible Volterra and Levin–Nohel retarded equations with infinite delay [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 509-532.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9177-y
    • Vancouver

      Oliva WM, Rocha C. Reducible Volterra and Levin–Nohel retarded equations with infinite delay [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 509-532.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9177-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: TEORIA DA BIFURCAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUTIERREZ, Carlos e SOTOMAYOR, Jorge e GARCIA, Ronaldo. Bifurcations of umbilic points and related principal cycles. Journal of Dynamics and Differential Equations, v. 16, n. 2, p. 321-346, 2004Tradução . . Disponível em: https://doi.org/10.1007/s10884-004-2783-9. Acesso em: 09 nov. 2025.
    • APA

      Gutierrez, C., Sotomayor, J., & Garcia, R. (2004). Bifurcations of umbilic points and related principal cycles. Journal of Dynamics and Differential Equations, 16( 2), 321-346. doi:10.1007/s10884-004-2783-9
    • NLM

      Gutierrez C, Sotomayor J, Garcia R. Bifurcations of umbilic points and related principal cycles [Internet]. Journal of Dynamics and Differential Equations. 2004 ; 16( 2): 321-346.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-004-2783-9
    • Vancouver

      Gutierrez C, Sotomayor J, Garcia R. Bifurcations of umbilic points and related principal cycles [Internet]. Journal of Dynamics and Differential Equations. 2004 ; 16( 2): 321-346.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-004-2783-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidades: IME, IF

    Assuntos: FÍSICA MATEMÁTICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, ANÁLISE GLOBAL, TEORIA DA BIFURCAÇÃO, SINGULARIDADES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e MALTA, Coraci Pereira. Singularity structure of the hopf bifurcation surface of a differential equation with two delays. Journal of Dynamics and Differential Equations, v. 4 , n. 4 , p. 617-650, 1992Tradução . . Disponível em: https://doi.org/10.1007%2FBF0104826. Acesso em: 09 nov. 2025.
    • APA

      Ragazzo, C. G., & Malta, C. P. (1992). Singularity structure of the hopf bifurcation surface of a differential equation with two delays. Journal of Dynamics and Differential Equations, 4 ( 4 ), 617-650. doi:10.1007%2FBF0104826
    • NLM

      Ragazzo CG, Malta CP. Singularity structure of the hopf bifurcation surface of a differential equation with two delays [Internet]. Journal of Dynamics and Differential Equations. 1992 ; 4 ( 4 ): 617-650.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007%2FBF0104826
    • Vancouver

      Ragazzo CG, Malta CP. Singularity structure of the hopf bifurcation surface of a differential equation with two delays [Internet]. Journal of Dynamics and Differential Equations. 1992 ; 4 ( 4 ): 617-650.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007%2FBF0104826

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025