Filtros : "Journal of Dynamics and Differential Equations" "SISTEMAS DINÂMICOS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, v. 37, p. 241–2265, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2025). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 37, 241–2265. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, v. 36, p. 3711-3742, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10339-2. Acesso em: 09 nov. 2025.
    • APA

      Moreira, E. M., & Valero, J. (2024). The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, 36, 3711-3742. doi:10.1007/s10884-023-10339-2
    • NLM

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
    • Vancouver

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DIMENSÃO INFINITA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, v. 36, p. S65-S75, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09962-8. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2024). A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, 36, S65-S75. doi:10.1007/s10884-021-09962-8
    • NLM

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
    • Vancouver

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel e VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, v. 30, n. 1, p. 227-255, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9539-1. Acesso em: 09 nov. 2025.
    • APA

      Smania, D., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Sérgio Muniz. Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, v. 11, n. 2, p. 279-296, 1999Tradução . . Disponível em: https://doi.org/10.1023%2FA%3A1021929413376. Acesso em: 09 nov. 2025.
    • APA

      Oliva, S. M. (1999). Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, 11( 2), 279-296. doi:10.1023%2FA%3A1021929413376
    • NLM

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376
    • Vancouver

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUSCO, Giorgio e OLIVA, Waldyr Muniz. Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems. Journal of Dynamics and Differential Equations, v. 2 , n. 1 , p. 1-17, 1990Tradução . . Disponível em: https://doi.org/10.1007/bf01047768. Acesso em: 09 nov. 2025.
    • APA

      Fusco, G., & Oliva, W. M. (1990). Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems. Journal of Dynamics and Differential Equations, 2 ( 1 ), 1-17. doi:10.1007/bf01047768
    • NLM

      Fusco G, Oliva WM. Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 1990 ; 2 ( 1 ): 1-17.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01047768
    • Vancouver

      Fusco G, Oliva WM. Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 1990 ; 2 ( 1 ): 1-17.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01047768

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025