Filtros : "Journal of Dynamics and Differential Equations" "EQUAÇÕES DIFERENCIAIS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e TROFIMCHUK, Sergei. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 921-939, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09748-z. Acesso em: 09 nov. 2025.
    • APA

      Morales, E. A. H., & Trofimchuk, S. (2020). Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. Journal of Dynamics and Differential Equations, 32( 2), 921-939. doi:10.1007/s10884-019-09748-z
    • NLM

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
    • Vancouver

      Morales EAH, Trofimchuk S. Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 921-939.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09748-z
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e TEIXEIRA, Marco A. e GAMEIRO, Márcio Fuzeto. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, v. 30, n. 3, p. 1199-1219, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9598-y. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., Teixeira, M. A., & Gameiro, M. F. (2018). On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, 30( 3), 1199-1219. doi:10.1007/s10884-017-9598-y
    • NLM

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
    • Vancouver

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold e OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, v. 28, n. 3/4, p. 1357–1391, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9456-8. Acesso em: 09 nov. 2025.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, v. 22, n. 3, p. 473-489, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9160-7. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2010). On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, 22( 3), 473-489. doi:10.1007/s10884-010-9160-7
    • NLM

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9160-7
    • Vancouver

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9160-7
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Sérgio Muniz. Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, v. 11, n. 2, p. 279-296, 1999Tradução . . Disponível em: https://doi.org/10.1023%2FA%3A1021929413376. Acesso em: 09 nov. 2025.
    • APA

      Oliva, S. M. (1999). Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, 11( 2), 279-296. doi:10.1023%2FA%3A1021929413376
    • NLM

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376
    • Vancouver

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025