Filtros : "Journal of Dynamics and Differential Equations" "Indexado no Science Citation Index" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCANEGRA-RODRÍGUEZ, Lito Edinson et al. Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, v. 35, n. 2, p. 1435-1456, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09955-7. Acesso em: 09 nov. 2025.
    • APA

      Bocanegra-Rodríguez, L. E., Silva, M. A. J. da, Ma, T. F., & Seminario-Huertas, P. N. (2023). Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, 35( 2), 1435-1456. doi:10.1007/s10884-021-09955-7
    • NLM

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
    • Vancouver

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 605-614, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09750-5. Acesso em: 09 nov. 2025.
    • APA

      Federson, M., Györi, I., Mesquita, J. G., & Taboas, P. Z. (2020). A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, 32( 2), 605-614. doi:10.1007/s10884-019-09750-5
    • NLM

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
    • Vancouver

      Federson M, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09750-5
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes e SILVA, Marcio A. Jorge e NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, v. 32, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09766-x. Acesso em: 09 nov. 2025.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 09 nov. 2025.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, v. 31, n. 1, p. 207-236, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9682-y. Acesso em: 09 nov. 2025.
    • APA

      Federson, M., Frasson, M. V. S., Mesquita, J. G., & Tacuri, P. H. (2019). Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, 31( 1), 207-236. doi:10.1007/s10884-018-9682-y
    • NLM

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
    • Vancouver

      Federson M, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-018-9682-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENG, B et al. Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1489-1507, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9604-4. Acesso em: 09 nov. 2025.
    • APA

      Feng, B., Ma, T. F., Monteiro, R. N., & Raposo, C. A. (2018). Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, 30( 4), 1489-1507. doi:10.1007/s10884-017-9604-4
    • NLM

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
    • Vancouver

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, v. 30, n. 2, p. 687-718, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9567-x. Acesso em: 09 nov. 2025.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel e VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, v. 30, n. 1, p. 227-255, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9539-1. Acesso em: 09 nov. 2025.
    • APA

      Smania, D., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M et al. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, v. 24, n. 3, p. 427-481, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10884-012-9269-y. Acesso em: 09 nov. 2025.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLÀ-MORALES, J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, v. 18, n. 4, p. 961-973, 2006Tradução . . Disponível em: https://doi.org/10.1007/s10884-006-9050-1. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., & Solà-Morales, J. (2006). Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, 18( 4), 961-973. doi:10.1007/s10884-006-9050-1
    • NLM

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-006-9050-1
    • Vancouver

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-006-9050-1

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025