Filtros : "Journal of Dynamics and Differential Equations" "Indexado no Mathematical Reviews" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, v. 30, n. 2, p. 687-718, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9567-x. Acesso em: 23 nov. 2025.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e TEIXEIRA, Marco A. e GAMEIRO, Márcio Fuzeto. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, v. 30, n. 3, p. 1199-1219, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9598-y. Acesso em: 23 nov. 2025.
    • APA

      Rodrigues, H. M., Teixeira, M. A., & Gameiro, M. F. (2018). On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, 30( 3), 1199-1219. doi:10.1007/s10884-017-9598-y
    • NLM

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
    • Vancouver

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-017-9598-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel e VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, v. 30, n. 1, p. 227-255, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9539-1. Acesso em: 23 nov. 2025.
    • APA

      Smania, D., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Smania D, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-016-9539-1
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, v. 29, n. Ju 2017, p. 597-613, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9486-2. Acesso em: 23 nov. 2025.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-015-9486-2
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M et al. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, v. 24, n. 3, p. 427-481, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10884-012-9269-y. Acesso em: 23 nov. 2025.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-012-9269-y
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLÀ-MORALES, J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, v. 18, n. 4, p. 961-973, 2006Tradução . . Disponível em: https://doi.org/10.1007/s10884-006-9050-1. Acesso em: 23 nov. 2025.
    • APA

      Rodrigues, H. M., & Solà-Morales, J. (2006). Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable. Journal of Dynamics and Differential Equations, 18( 4), 961-973. doi:10.1007/s10884-006-9050-1
    • NLM

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-006-9050-1
    • Vancouver

      Rodrigues HM, Solà-Morales J. Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 4): 961-973.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10884-006-9050-1

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025