Filtros : "Communications in Nonlinear Science and Numerical Simulation" "2024" Removido: "Santos, Moises S." Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: FFCLRP

    Subjects: SINGULARIDADES, SISTEMAS DINÂMICOS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, v. 134, p. 1-31, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108012. Acesso em: 05 nov. 2025.
    • APA

      Carvalho, T. de. (2024). Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, 134, 1-31. doi:10.1016/j.cnsns.2024.108012
    • NLM

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
    • Vancouver

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 05 nov. 2025.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IME

    Assunto: EQUAÇÕES INTEGRO-DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      STEINDORF, Vanessa et al. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, v. 128, n. artigo 107663, p. 1-21, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2023.107663. Acesso em: 05 nov. 2025.
    • APA

      Steindorf, V., Oliva, S. M., Stollenwerk, N., & Aguiar, M. (2024). Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, 128( artigo 107663), 1-21. doi:10.1016/j.cnsns.2023.107663
    • NLM

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663
    • Vancouver

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025