Filtros : "Communications in Mathematical Physics" "PEREZ, JOSE FERNANDO" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel e PEREZ, José Fernando. Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, n. 170, p. 21-39, 1995Tradução . . Disponível em: https://doi.org/10.1007/BF02099437. Acesso em: 09 nov. 2025.
    • APA

      Dreifus, H. von, Klein, A., & Perez, J. F. (1995). Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, ( 170), 21-39. doi:10.1007/BF02099437
    • NLM

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099437
    • Vancouver

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099437
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KLEIN, A e PEREZ, J F. Localization in the ground state of the ising model with a randon transverse field. Communications in Mathematical Physics, v. 135, n. 3 , p. 495-515, 1991Tradução . . Disponível em: https://doi.org/10.1007/bf02104118. Acesso em: 09 nov. 2025.
    • APA

      Klein, A., & Perez, J. F. (1991). Localization in the ground state of the ising model with a randon transverse field. Communications in Mathematical Physics, 135( 3 ), 495-515. doi:10.1007/bf02104118
    • NLM

      Klein A, Perez JF. Localization in the ground state of the ising model with a randon transverse field [Internet]. Communications in Mathematical Physics. 1991 ;135( 3 ): 495-515.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02104118
    • Vancouver

      Klein A, Perez JF. Localization in the ground state of the ising model with a randon transverse field [Internet]. Communications in Mathematical Physics. 1991 ;135( 3 ): 495-515.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02104118
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA DA MATÉRIA CONDENSADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANINO, M e PEREZ, J F. Singularity of the density of states for one-dimensional chains with randon couplings. Communications in Mathematical Physics, v. 124, n. 4 , p. 543-52, 1989Tradução . . Disponível em: https://doi.org/10.1007/bf01218450. Acesso em: 09 nov. 2025.
    • APA

      Campanino, M., & Perez, J. F. (1989). Singularity of the density of states for one-dimensional chains with randon couplings. Communications in Mathematical Physics, 124( 4 ), 543-52. doi:10.1007/bf01218450
    • NLM

      Campanino M, Perez JF. Singularity of the density of states for one-dimensional chains with randon couplings [Internet]. Communications in Mathematical Physics. 1989 ;124( 4 ): 543-52.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01218450
    • Vancouver

      Campanino M, Perez JF. Singularity of the density of states for one-dimensional chains with randon couplings [Internet]. Communications in Mathematical Physics. 1989 ;124( 4 ): 543-52.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01218450
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: DENSIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVIER, A et al. Smoothness of the density of states in the anderson model at high disorder. Communications in Mathematical Physics, v. 114, n. 3 , p. 439-61, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf01242138. Acesso em: 09 nov. 2025.
    • APA

      Bovier, A., Campanino, M., Klein, A., & Perez, J. F. (1988). Smoothness of the density of states in the anderson model at high disorder. Communications in Mathematical Physics, 114( 3 ), 439-61. doi:10.1007/bf01242138
    • NLM

      Bovier A, Campanino M, Klein A, Perez JF. Smoothness of the density of states in the anderson model at high disorder [Internet]. Communications in Mathematical Physics. 1988 ;114( 3 ): 439-61.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01242138
    • Vancouver

      Bovier A, Campanino M, Klein A, Perez JF. Smoothness of the density of states in the anderson model at high disorder [Internet]. Communications in Mathematical Physics. 1988 ;114( 3 ): 439-61.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01242138
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: DIMENSÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KLEIN, A e MARTINELLI, F e PEREZ, J F. Rigorous replica trick approach to anderson localization in one dimension. Communications in Mathematical Physics, v. 106, n. 4 , p. 623-33, 1986Tradução . . Disponível em: https://doi.org/10.1007/bf01463399. Acesso em: 09 nov. 2025.
    • APA

      Klein, A., Martinelli, F., & Perez, J. F. (1986). Rigorous replica trick approach to anderson localization in one dimension. Communications in Mathematical Physics, 106( 4 ), 623-33. doi:10.1007/bf01463399
    • NLM

      Klein A, Martinelli F, Perez JF. Rigorous replica trick approach to anderson localization in one dimension [Internet]. Communications in Mathematical Physics. 1986 ;106( 4 ): 623-33.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01463399
    • Vancouver

      Klein A, Martinelli F, Perez JF. Rigorous replica trick approach to anderson localization in one dimension [Internet]. Communications in Mathematical Physics. 1986 ;106( 4 ): 623-33.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01463399
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA DOS FLUÍDOS, TEORIA QUÂNTICA DE CAMPO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENRY, Daniel Bauman e PEREZ, Jose Fernando e WRESZINSKI, Walter Felipe. Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, v. 85, p. 351-361, 1982Tradução . . Disponível em: https://doi.org/10.1007/BF01208719. Acesso em: 09 nov. 2025.
    • APA

      Henry, D. B., Perez, J. F., & Wreszinski, W. F. (1982). Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, 85, 351-361. doi:10.1007/BF01208719
    • NLM

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01208719
    • Vancouver

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01208719

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025