Filtros : "Communications in Mathematical Physics" "IF-FMA" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: MECÂNICA QUÂNTICA, SIMETRIA (FÍSICA DE PARTÍCULAS), SISTEMAS HAMILTONIANOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZA, Nelson Javier Buitrago e BRU, J. -B. e DE SIQUEIRA PEDRA, Walter. Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, v. 360, n. ju 2018, p. 715-726, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3121-0. Acesso em: 09 nov. 2025.
    • APA

      Aza, N. J. B., Bru, J. -B., & De Siqueira Pedra, W. (2018). Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, 360( ju 2018), 715-726. doi:10.1007/s00220-018-3121-0
    • NLM

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
    • Vancouver

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GENTILE, Guido e CORTEZ, Daniel Augusto e BARATA, João Carlos Alves. Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, v. 260, n. 2, p. 403-443, 2005Tradução . . Disponível em: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=. Acesso em: 09 nov. 2025.
    • APA

      Gentile, G., Cortez, D. A., & Barata, J. C. A. (2005). Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, 260( 2), 403-443. Recuperado de http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • NLM

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • Vancouver

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e NILL, F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, v. 191, n. 2, p. 409-466, 1998Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Barata, J. C. A., & Nill, F. (1998). Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, 191( 2), 409-466.
    • NLM

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 nov. 09 ]
    • Vancouver

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel e PEREZ, José Fernando. Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, n. 170, p. 21-39, 1995Tradução . . Disponível em: https://doi.org/10.1007/BF02099437. Acesso em: 09 nov. 2025.
    • APA

      Dreifus, H. von, Klein, A., & Perez, J. F. (1995). Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, ( 170), 21-39. doi:10.1007/BF02099437
    • NLM

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099437
    • Vancouver

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099437
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e NILL, F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics, v. 171, p. 27-86, 1995Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Barata, J. C. A., & Nill, F. (1995). Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics, 171, 27-86.
    • NLM

      Barata JCA, Nill F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics. 1995 ;171 27-86.[citado 2025 nov. 09 ]
    • Vancouver

      Barata JCA, Nill F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics. 1995 ;171 27-86.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA DE PARTÍCULAS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDALLA, Elcio et al. Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics, v. 166, p. 379-96, 1994Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Abdalla, E., Abdalla, M. C. B., Brunelli, J. C., & Zadra, A. (1994). Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics, 166, 379-96.
    • NLM

      Abdalla E, Abdalla MCB, Brunelli JC, Zadra A. Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics. 1994 ;166 379-96.[citado 2025 nov. 09 ]
    • Vancouver

      Abdalla E, Abdalla MCB, Brunelli JC, Zadra A. Algebra of non-local charges in non-linear sigma models. Communications in Mathematical Physics. 1994 ;166 379-96.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves. Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics, v. 143, n. ja 1992, p. 545-58, 1992Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Barata, J. C. A. (1992). Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics, 143( ja 1992), 545-58.
    • NLM

      Barata JCA. Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics. 1992 ;143( ja 1992): 545-58.[citado 2025 nov. 09 ]
    • Vancouver

      Barata JCA. Reduction formulae for euclidean lattice theories. Communications in Mathematical Physics. 1992 ;143( ja 1992): 545-58.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves. Scattering states of charged particles in the 'Z IND.2' gauge theories. Communications in Mathematical Physics, v. 138, n. 1 , p. 175-91, 1991Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Barata, J. C. A. (1991). Scattering states of charged particles in the 'Z IND.2' gauge theories. Communications in Mathematical Physics, 138( 1 ), 175-91.
    • NLM

      Barata JCA. Scattering states of charged particles in the 'Z IND.2' gauge theories. Communications in Mathematical Physics. 1991 ;138( 1 ): 175-91.[citado 2025 nov. 09 ]
    • Vancouver

      Barata JCA. Scattering states of charged particles in the 'Z IND.2' gauge theories. Communications in Mathematical Physics. 1991 ;138( 1 ): 175-91.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KLEIN, A e PEREZ, J F. Localization in the ground state of the ising model with a randon transverse field. Communications in Mathematical Physics, v. 135, n. 3 , p. 495-515, 1991Tradução . . Disponível em: https://doi.org/10.1007/bf02104118. Acesso em: 09 nov. 2025.
    • APA

      Klein, A., & Perez, J. F. (1991). Localization in the ground state of the ising model with a randon transverse field. Communications in Mathematical Physics, 135( 3 ), 495-515. doi:10.1007/bf02104118
    • NLM

      Klein A, Perez JF. Localization in the ground state of the ising model with a randon transverse field [Internet]. Communications in Mathematical Physics. 1991 ;135( 3 ): 495-515.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02104118
    • Vancouver

      Klein A, Perez JF. Localization in the ground state of the ising model with a randon transverse field [Internet]. Communications in Mathematical Physics. 1991 ;135( 3 ): 495-515.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02104118
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves. On the phase structure of the compact abelian lattice higgs model. Communications in Mathematical Physics, v. 129, p. 511-23, 1990Tradução . . Disponível em: https://doi.org/10.1007/bf02097103. Acesso em: 09 nov. 2025.
    • APA

      Barata, J. C. A. (1990). On the phase structure of the compact abelian lattice higgs model. Communications in Mathematical Physics, 129, 511-23. doi:10.1007/bf02097103
    • NLM

      Barata JCA. On the phase structure of the compact abelian lattice higgs model [Internet]. Communications in Mathematical Physics. 1990 ;129 511-23.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02097103
    • Vancouver

      Barata JCA. On the phase structure of the compact abelian lattice higgs model [Internet]. Communications in Mathematical Physics. 1990 ;129 511-23.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02097103
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA DA MATÉRIA CONDENSADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANINO, M e PEREZ, J F. Singularity of the density of states for one-dimensional chains with randon couplings. Communications in Mathematical Physics, v. 124, n. 4 , p. 543-52, 1989Tradução . . Disponível em: https://doi.org/10.1007/bf01218450. Acesso em: 09 nov. 2025.
    • APA

      Campanino, M., & Perez, J. F. (1989). Singularity of the density of states for one-dimensional chains with randon couplings. Communications in Mathematical Physics, 124( 4 ), 543-52. doi:10.1007/bf01218450
    • NLM

      Campanino M, Perez JF. Singularity of the density of states for one-dimensional chains with randon couplings [Internet]. Communications in Mathematical Physics. 1989 ;124( 4 ): 543-52.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01218450
    • Vancouver

      Campanino M, Perez JF. Singularity of the density of states for one-dimensional chains with randon couplings [Internet]. Communications in Mathematical Physics. 1989 ;124( 4 ): 543-52.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01218450
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: DENSIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVIER, A et al. Smoothness of the density of states in the anderson model at high disorder. Communications in Mathematical Physics, v. 114, n. 3 , p. 439-61, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf01242138. Acesso em: 09 nov. 2025.
    • APA

      Bovier, A., Campanino, M., Klein, A., & Perez, J. F. (1988). Smoothness of the density of states in the anderson model at high disorder. Communications in Mathematical Physics, 114( 3 ), 439-61. doi:10.1007/bf01242138
    • NLM

      Bovier A, Campanino M, Klein A, Perez JF. Smoothness of the density of states in the anderson model at high disorder [Internet]. Communications in Mathematical Physics. 1988 ;114( 3 ): 439-61.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01242138
    • Vancouver

      Bovier A, Campanino M, Klein A, Perez JF. Smoothness of the density of states in the anderson model at high disorder [Internet]. Communications in Mathematical Physics. 1988 ;114( 3 ): 439-61.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01242138
  • Source: Communications in Mathematical Physics. Unidade: IF

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WRESZINSKI, W F e SCHARF, G. On the relation between classical and quantum statistical mechanics. Communications in Mathematical Physics, v. 110, n. 1 , p. 1-31, 1987Tradução . . Disponível em: https://doi.org/10.1007/bf01209014. Acesso em: 09 nov. 2025.
    • APA

      Wreszinski, W. F., & Scharf, G. (1987). On the relation between classical and quantum statistical mechanics. Communications in Mathematical Physics, 110( 1 ), 1-31. doi:10.1007/bf01209014
    • NLM

      Wreszinski WF, Scharf G. On the relation between classical and quantum statistical mechanics [Internet]. Communications in Mathematical Physics. 1987 ;110( 1 ): 1-31.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01209014
    • Vancouver

      Wreszinski WF, Scharf G. On the relation between classical and quantum statistical mechanics [Internet]. Communications in Mathematical Physics. 1987 ;110( 1 ): 1-31.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01209014
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÉRMIO

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABDALLA, Elcio e FORGER, Frank Michael. Integrable non linear sigma models with fermions. Communications in Mathematical Physics, v. 104, n. 1 , p. 123-50, 1986Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Abdalla, E., & Forger, F. M. (1986). Integrable non linear sigma models with fermions. Communications in Mathematical Physics, 104( 1 ), 123-50.
    • NLM

      Abdalla E, Forger FM. Integrable non linear sigma models with fermions. Communications in Mathematical Physics. 1986 ;104( 1 ): 123-50.[citado 2025 nov. 09 ]
    • Vancouver

      Abdalla E, Forger FM. Integrable non linear sigma models with fermions. Communications in Mathematical Physics. 1986 ;104( 1 ): 123-50.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: DIMENSÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KLEIN, A e MARTINELLI, F e PEREZ, J F. Rigorous replica trick approach to anderson localization in one dimension. Communications in Mathematical Physics, v. 106, n. 4 , p. 623-33, 1986Tradução . . Disponível em: https://doi.org/10.1007/bf01463399. Acesso em: 09 nov. 2025.
    • APA

      Klein, A., Martinelli, F., & Perez, J. F. (1986). Rigorous replica trick approach to anderson localization in one dimension. Communications in Mathematical Physics, 106( 4 ), 623-33. doi:10.1007/bf01463399
    • NLM

      Klein A, Martinelli F, Perez JF. Rigorous replica trick approach to anderson localization in one dimension [Internet]. Communications in Mathematical Physics. 1986 ;106( 4 ): 623-33.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01463399
    • Vancouver

      Klein A, Martinelli F, Perez JF. Rigorous replica trick approach to anderson localization in one dimension [Internet]. Communications in Mathematical Physics. 1986 ;106( 4 ): 623-33.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01463399
  • Source: Communications in Mathematical Physics. Unidade: IF

    Assunto: TEORIA DE GAUGE

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e WRESZINSKI, W F. Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics, v. 103, n. 4 , p. 637-68, 1986Tradução . . Acesso em: 09 nov. 2025.
    • APA

      Barata, J. C. A., & Wreszinski, W. F. (1986). Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics, 103( 4 ), 637-68.
    • NLM

      Barata JCA, Wreszinski WF. Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics. 1986 ;103( 4 ): 637-68.[citado 2025 nov. 09 ]
    • Vancouver

      Barata JCA, Wreszinski WF. Absence of charged states in the u (1). Higgs gauge theory. Communications in Mathematical Physics. 1986 ;103( 4 ): 637-68.[citado 2025 nov. 09 ]
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA DOS FLUÍDOS, TEORIA QUÂNTICA DE CAMPO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HENRY, Daniel Bauman e PEREZ, Jose Fernando e WRESZINSKI, Walter Felipe. Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, v. 85, p. 351-361, 1982Tradução . . Disponível em: https://doi.org/10.1007/BF01208719. Acesso em: 09 nov. 2025.
    • APA

      Henry, D. B., Perez, J. F., & Wreszinski, W. F. (1982). Stability theory for solitary-wave solutions of scalar field equations. Communications in Mathematical Physics, 85, 351-361. doi:10.1007/BF01208719
    • NLM

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01208719
    • Vancouver

      Henry DB, Perez JF, Wreszinski WF. Stability theory for solitary-wave solutions of scalar field equations [Internet]. Communications in Mathematical Physics. 1982 ; 85 351-361.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01208719

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025