Filtros : "Communications in Mathematical Physics" "Estados Unidos" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: TEOREMA DO PONTO FIXO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAIK, Jinho e PROKHOROV, Andrei e SILVA, Guilherme Lima Ferreira da. Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, v. 401, n. 2, p. 1753-1806, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04683-z. Acesso em: 09 nov. 2025.
    • APA

      Baik, J., Prokhorov, A., & Silva, G. L. F. da. (2023). Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, 401( 2), 1753-1806. doi:10.1007/s00220-023-04683-z
    • NLM

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
    • Vancouver

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: EQUAÇÕES INTEGRO-DIFERENCIAIS, MATRIZES, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GHOSAL, Promit e SILVA, Guilherme Lima Ferreira da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, v. 397, n. 3, p. 1237-1307, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-022-04518-3. Acesso em: 09 nov. 2025.
    • APA

      Ghosal, P., & Silva, G. L. F. da. (2023). Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, 397( 3), 1237-1307. doi:10.1007/s00220-022-04518-3
    • NLM

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
    • Vancouver

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-FINKELSHTEIN, Andrei e SILVA, Guilherme Lima Ferreira da. Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, v. 383, n. 3, p. 2163-2242, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03999-y. Acesso em: 09 nov. 2025.
    • APA

      Martínez-Finkelshtein, A., & Silva, G. L. F. da. (2021). Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, 383( 3), 2163-2242. doi:10.1007/s00220-021-03999-y
    • NLM

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-03999-y
    • Vancouver

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-03999-y
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: FÍSICA MATEMÁTICA, GEOMETRIA ALGÉBRICA, ANÁLISE FUNCIONAL, ÁLGEBRAS DE OPERADORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKAWA, Tomoyuki e FUTORNY, Vyacheslav e RAMIREZ, Luis Enrique. Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, v. 353, p. 1151–1178, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2872-3. Acesso em: 09 nov. 2025.
    • APA

      Arakawa, T., Futorny, V., & Ramirez, L. E. (2017). Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, 353, 1151–1178. doi:10.1007/s00220-017-2872-3
    • NLM

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
    • Vancouver

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, v. 355, n. 3, p. 1209–1241, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2967-x. Acesso em: 09 nov. 2025.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2017). New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, 355( 3), 1209–1241. doi:10.1007/s00220-017-2967-x
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIMITROV, Ivan e FUTORNY, Vyacheslav e PENKOV, Ivan. A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, v. 250, n. 1, p. 47-68, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00220-004-1142-3. Acesso em: 09 nov. 2025.
    • APA

      Dimitrov, I., Futorny, V., & Penkov, I. (2004). A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, 250( 1), 47-68. doi:10.1007/s00220-004-1142-3
    • NLM

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
    • Vancouver

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
  • Fonte: Communications in Mathematical Physics. Unidades: IME, IF

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel e PEREZ, José Fernando. Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, n. 170, p. 21-39, 1995Tradução . . Disponível em: https://doi.org/10.1007/BF02099437. Acesso em: 09 nov. 2025.
    • APA

      Dreifus, H. von, Klein, A., & Perez, J. F. (1995). Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, ( 170), 21-39. doi:10.1007/BF02099437
    • NLM

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099437
    • Vancouver

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099437
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel. Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, n. 140, p. 133-147, 1991Tradução . . Disponível em: https://doi.org/10.1007/BF02099294. Acesso em: 09 nov. 2025.
    • APA

      Dreifus, H. von, & Klein, A. (1991). Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, ( 140), 133-147. doi:10.1007/BF02099294
    • NLM

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099294
    • Vancouver

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF02099294
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel. A new proof of localization in the Anderson tight binding model. Communications in Mathematical Physics, n. 124, p. 285-299, 1989Tradução . . Disponível em: https://doi.org/10.1007/BF01219198. Acesso em: 09 nov. 2025.
    • APA

      Dreifus, H. von, & Klein, A. (1989). A new proof of localization in the Anderson tight binding model. Communications in Mathematical Physics, ( 124), 285-299. doi:10.1007/BF01219198
    • NLM

      Dreifus H von, Klein A. A new proof of localization in the Anderson tight binding model [Internet]. Communications in Mathematical Physics. 1989 ;( 124): 285-299.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01219198
    • Vancouver

      Dreifus H von, Klein A. A new proof of localization in the Anderson tight binding model [Internet]. Communications in Mathematical Physics. 1989 ;( 124): 285-299.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/BF01219198

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025