Filtros : "Communications in Mathematical Physics" "SISTEMAS HAMILTONIANOS" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: SISTEMAS HAMILTONIANOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄGER, Tobias e KOROPECKI, Andres e TAL, Fábio Armando. On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, v. 383, p. 953-980, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03995-2. Acesso em: 09 nov. 2025.
    • APA

      Jäger, T., Koropecki, A., & Tal, F. A. (2021). On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, 383, 953-980. doi:10.1007/s00220-021-03995-2
    • NLM

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
    • Vancouver

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: MECÂNICA QUÂNTICA, SIMETRIA (FÍSICA DE PARTÍCULAS), SISTEMAS HAMILTONIANOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZA, Nelson Javier Buitrago e BRU, J. -B. e DE SIQUEIRA PEDRA, Walter. Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, v. 360, n. ju 2018, p. 715-726, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3121-0. Acesso em: 09 nov. 2025.
    • APA

      Aza, N. J. B., Bru, J. -B., & De Siqueira Pedra, W. (2018). Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, 360( ju 2018), 715-726. doi:10.1007/s00220-018-3121-0
    • NLM

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
    • Vancouver

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GENTILE, Guido e CORTEZ, Daniel Augusto e BARATA, João Carlos Alves. Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, v. 260, n. 2, p. 403-443, 2005Tradução . . Disponível em: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=. Acesso em: 09 nov. 2025.
    • APA

      Gentile, G., Cortez, D. A., & Barata, J. C. A. (2005). Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, 260( 2), 403-443. Recuperado de http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • NLM

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • Vancouver

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 nov. 09 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e ROMERO, Sandro Vieira. Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, v. 256, n. 2, p. 375-410, 2005Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8. Acesso em: 09 nov. 2025.
    • APA

      Forger, F. M., & Romero, S. V. (2005). Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, 256( 2), 375-410. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • NLM

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 nov. 09 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • Vancouver

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 nov. 09 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: ANÁLISE GLOBAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS HAMILTONIANOS, SISTEMAS LAGRANGIANOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, v. 166, n. 2, p. 255-277, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02112316. Acesso em: 09 nov. 2025.
    • APA

      Ragazzo, C. G. (1994). Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, 166( 2), 255-277. doi:10.1007/bf02112316
    • NLM

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02112316
    • Vancouver

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02112316

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025