Filtros : "Communications in Mathematical Physics" "Indexado no MathSciNet - American Mathematical Society" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e ROMERO, Sandro Vieira. Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, v. 256, n. 2, p. 375-410, 2005Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8. Acesso em: 08 nov. 2025.
    • APA

      Forger, F. M., & Romero, S. V. (2005). Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, 256( 2), 375-410. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • NLM

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 nov. 08 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • Vancouver

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 nov. 08 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIMITROV, Ivan e FUTORNY, Vyacheslav e PENKOV, Ivan. A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, v. 250, n. 1, p. 47-68, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00220-004-1142-3. Acesso em: 08 nov. 2025.
    • APA

      Dimitrov, I., Futorny, V., & Penkov, I. (2004). A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, 250( 1), 47-68. doi:10.1007/s00220-004-1142-3
    • NLM

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
    • Vancouver

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e SCHONMANN, Roberto Henrique e SIDORAVICIUS, Vadlas. Stretched exponential fixation in stochastic ising models at zero temperature. Communications in Mathematical Physics, v. 228, n. 3, p. 495-518, 2002Tradução . . Disponível em: https://doi.org/10.1007/s002200200658. Acesso em: 08 nov. 2025.
    • APA

      Fontes, L. R., Schonmann, R. H., & Sidoravicius, V. (2002). Stretched exponential fixation in stochastic ising models at zero temperature. Communications in Mathematical Physics, 228( 3), 495-518. doi:10.1007/s002200200658
    • NLM

      Fontes LR, Schonmann RH, Sidoravicius V. Stretched exponential fixation in stochastic ising models at zero temperature [Internet]. Communications in Mathematical Physics. 2002 ; 228( 3): 495-518.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s002200200658
    • Vancouver

      Fontes LR, Schonmann RH, Sidoravicius V. Stretched exponential fixation in stochastic ising models at zero temperature [Internet]. Communications in Mathematical Physics. 2002 ; 228( 3): 495-518.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s002200200658

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025