Filtros : "Communications in Algebra" "Financiado pela FAPESP" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZHANG, Zerui. Solvability and nilpotency of Novikov algebras. Communications in Algebra, v. 48, n. 12, p. 5412-5420, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1789652. Acesso em: 09 nov. 2025.
    • APA

      Shestakov, I. P., & Zhang, Z. (2020). Solvability and nilpotency of Novikov algebras. Communications in Algebra, 48( 12), 5412-5420. doi:10.1080/00927872.2020.1789652
    • NLM

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1789652
    • Vancouver

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1789652
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale e SHESTAKOV, Ivan P. Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, v. 48, n. 7, p. 3091-3098, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1729363. Acesso em: 09 nov. 2025.
    • APA

      Crode, S. D., & Shestakov, I. P. (2020). Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48( 7), 3091-3098. doi:10.1080/00927872.2020.1729363
    • NLM

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1729363
    • Vancouver

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1729363
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: TEORIA DOS GRUPOS, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANKARAN, Parameswaran e WONG, Peter. Twisted conjugacy in free products. Communications in Algebra, v. 48, n. 9, p. 3916-3921, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1751848. Acesso em: 09 nov. 2025.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2020). Twisted conjugacy in free products. Communications in Algebra, 48( 9), 3916-3921. doi:10.1080/00927872.2020.1751848
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1751848
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1751848
  • Fonte: Communications in Algebra. Unidade: ICMC

    Assunto: CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTANUCCI, Maria e SPEZIALI, Pietro. Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, v. 48, n. 9, p. 3690-3706, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1743714. Acesso em: 09 nov. 2025.
    • APA

      Montanucci, M., & Speziali, P. (2020). Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, 48( 9), 3690-3706. doi:10.1080/00927872.2020.1743714
    • NLM

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1743714
    • Vancouver

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1743714
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e MENDOZA, Octavio e SÁENZ, Corina. Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, v. 47, n. 8, p. 3076-3093, 2019Tradução . . Disponível em: https://doi.org/10.1080/00927872.2018.1550786. Acesso em: 09 nov. 2025.
    • APA

      Marcos, E. do N., Mendoza, O., & Sáenz, C. (2019). Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, 47( 8), 3076-3093. doi:10.1080/00927872.2018.1550786
    • NLM

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1550786
    • Vancouver

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1550786
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr e FUTORNY, Vyacheslav. Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, v. 47, n. 10, p. 4114–4124, 2019Tradução . . Disponível em: https://doi.org/10.1080/00927872.2019.1579336. Acesso em: 09 nov. 2025.
    • APA

      Bavula, V., & Futorny, V. (2019). Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, 47( 10), 4114–4124. doi:10.1080/00927872.2019.1579336
    • NLM

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2019.1579336
    • Vancouver

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2019.1579336
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: GRUPOS FINITOS ABSTRATOS, GRUPOS NILPOTENTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e NASYBULLOV, Timur. On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, v. 47, n. 3, p. 930-944, 2019Tradução . . Disponível em: https://doi.org/10.1080/00927872.2018.1498873. Acesso em: 09 nov. 2025.
    • APA

      Gonçalves, D. L., & Nasybullov, T. (2019). On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, 47( 3), 930-944. doi:10.1080/00927872.2018.1498873
    • NLM

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1498873
    • Vancouver

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1498873
  • Fonte: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Quantum linear Galois orders. Communications in Algebra, v. 47, n. 12, p. 5361–5369, 2019Tradução . . Disponível em: https://doi.org/10.1080/00927872.2019.1623236. Acesso em: 09 nov. 2025.
    • APA

      Futorny, V., & Schwarz, J. F. (2019). Quantum linear Galois orders. Communications in Algebra, 47( 12), 5361–5369. doi:10.1080/00927872.2019.1623236
    • NLM

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2019.1623236
    • Vancouver

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2019.1623236
  • Fonte: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly e FUTORNY, Vyacheslav. Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, v. 46, n. 8, p. 3413–3429, 2018Tradução . . Disponível em: https://doi.org/10.1080/00927872.2017.1412456. Acesso em: 09 nov. 2025.
    • APA

      Billig, Y., & Futorny, V. (2018). Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, 46( 8), 3413–3429. doi:10.1080/00927872.2017.1412456
    • NLM

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1412456
    • Vancouver

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1412456
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: TEORIA DOS GRUPOS, LAÇOS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. Nilpotent Steiner loops of class 2. Communications in Algebra, v. 46, n. 12, p. 5480-5486, 2018Tradução . . Disponível em: https://doi.org/10.1080/00927872.2018.1470243. Acesso em: 09 nov. 2025.
    • APA

      Grichkov, A., Rasskazova, D., Rasskazova, M., & Stuhl, I. (2018). Nilpotent Steiner loops of class 2. Communications in Algebra, 46( 12), 5480-5486. doi:10.1080/00927872.2018.1470243
    • NLM

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1470243
    • Vancouver

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1470243
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, FUNÇÕES AUTOMORFAS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAYGORODOV, Ivan e SHESTAKOV, Ivan P e UMIRBAEV, Ualbai U. Free generic Poisson fields and algebras. Communications in Algebra, v. 46, p. 1799-1812, 2017Tradução . . Disponível em: https://doi.org/10.1080/00927872.2017.1358269. Acesso em: 09 nov. 2025.
    • APA

      Kaygorodov, I., Shestakov, I. P., & Umirbaev, U. U. (2017). Free generic Poisson fields and algebras. Communications in Algebra, 46, 1799-1812. doi:10.1080/00927872.2017.1358269
    • NLM

      Kaygorodov I, Shestakov IP, Umirbaev UU. Free generic Poisson fields and algebras [Internet]. Communications in Algebra. 2017 ; 46 1799-1812.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1358269
    • Vancouver

      Kaygorodov I, Shestakov IP, Umirbaev UU. Free generic Poisson fields and algebras [Internet]. Communications in Algebra. 2017 ; 46 1799-1812.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1358269
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: ANÉIS COM DIVISÃO, GRUPOS LIVRES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Free groups in a normal subgroup of the field of fractions of a skew polynomial ring. Communications in Algebra, v. 45, n. 12, p. 5193-5201, 2017Tradução . . Disponível em: https://doi.org/10.1080/00927872.2017.1298774. Acesso em: 09 nov. 2025.
    • APA

      Gonçalves, J. Z. (2017). Free groups in a normal subgroup of the field of fractions of a skew polynomial ring. Communications in Algebra, 45( 12), 5193-5201. doi:10.1080/00927872.2017.1298774
    • NLM

      Gonçalves JZ. Free groups in a normal subgroup of the field of fractions of a skew polynomial ring [Internet]. Communications in Algebra. 2017 ; 45( 12): 5193-5201.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1298774
    • Vancouver

      Gonçalves JZ. Free groups in a normal subgroup of the field of fractions of a skew polynomial ring [Internet]. Communications in Algebra. 2017 ; 45( 12): 5193-5201.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1298774

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025