Filtros : "Communications in Algebra" "2021" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 09 nov. 2025.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Vitor Araujo e FERRAZ, Raul Antonio. Central units in some integral group rings. Communications in Algebra, v. 49, n. 9, p. 4000-4015, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1910284. Acesso em: 09 nov. 2025.
    • APA

      Garcia, V. A., & Ferraz, R. A. (2021). Central units in some integral group rings. Communications in Algebra, 49( 9), 4000-4015. doi:10.1080/00927872.2021.1910284
    • NLM

      Garcia VA, Ferraz RA. Central units in some integral group rings [Internet]. Communications in Algebra. 2021 ; 49( 9): 4000-4015.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1910284
    • Vancouver

      Garcia VA, Ferraz RA. Central units in some integral group rings [Internet]. Communications in Algebra. 2021 ; 49( 9): 4000-4015.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1910284
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e ELGENDY, Hader A. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, v. 49, n. 7, p. 2934-2940, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1884691. Acesso em: 09 nov. 2025.
    • APA

      Grichkov, A., & Elgendy, H. A. (2021). The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, 49( 7), 2934-2940. doi:10.1080/00927872.2021.1884691
    • NLM

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1884691
    • Vancouver

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1884691
  • Source: Communications in Algebra. Unidades: IME, EACH

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHN, Antonio et al. About nilalgebras satisfying (xy)2 = x2y2. Communications in Algebra, v. 49, n. 9, p. 3708-3719, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1903024. Acesso em: 09 nov. 2025.
    • APA

      Behn, A., Correa, I., Fernández, J. C. G., & Garcia, C. I. (2021). About nilalgebras satisfying (xy)2 = x2y2. Communications in Algebra, 49( 9), 3708-3719. doi:10.1080/00927872.2021.1903024
    • NLM

      Behn A, Correa I, Fernández JCG, Garcia CI. About nilalgebras satisfying (xy)2 = x2y2 [Internet]. Communications in Algebra. 2021 ; 49( 9): 3708-3719.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1903024
    • Vancouver

      Behn A, Correa I, Fernández JCG, Garcia CI. About nilalgebras satisfying (xy)2 = x2y2 [Internet]. Communications in Algebra. 2021 ; 49( 9): 3708-3719.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1903024
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, v. 49, n. 12, p. 5472-5482, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1947310. Acesso em: 09 nov. 2025.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, TEORIA DA DIMENSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e MIRANDA-NETO, Cleto Brasileiro. Criteria for prescribed bound on projective dimension. Communications in Algebra, v. 49, p. 2505-2515, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1874004. Acesso em: 09 nov. 2025.
    • APA

      Jorge Pérez, V. H., & Miranda-Neto, C. B. (2021). Criteria for prescribed bound on projective dimension. Communications in Algebra, 49, 2505-2515. doi:10.1080/00927872.2021.1874004
    • NLM

      Jorge Pérez VH, Miranda-Neto CB. Criteria for prescribed bound on projective dimension [Internet]. Communications in Algebra. 2021 ; 49 2505-2515.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1874004
    • Vancouver

      Jorge Pérez VH, Miranda-Neto CB. Criteria for prescribed bound on projective dimension [Internet]. Communications in Algebra. 2021 ; 49 2505-2515.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1874004

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025