Filtros : "Communications in Algebra" "Shestakov, Ivan P" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subjects: ESTRUTURAS ALGÉBRICAS ORDENADAS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ISMAILOV, Nurlan e SHESTAKOV, Ivan P e ZHANG, Zerui. Free commutative two-step-associative algebras. Communications in Algebra, v. 52, n. 12, p. 4992–5004, 2024Tradução . . Disponível em: https://doi.org/10.1080/00927872.2024.2362345. Acesso em: 09 nov. 2025.
    • APA

      Ismailov, N., Shestakov, I. P., & Zhang, Z. (2024). Free commutative two-step-associative algebras. Communications in Algebra, 52( 12), 4992–5004. doi:10.1080/00927872.2024.2362345
    • NLM

      Ismailov N, Shestakov IP, Zhang Z. Free commutative two-step-associative algebras [Internet]. Communications in Algebra. 2024 ; 52( 12): 4992–5004.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2024.2362345
    • Vancouver

      Ismailov N, Shestakov IP, Zhang Z. Free commutative two-step-associative algebras [Internet]. Communications in Algebra. 2024 ; 52( 12): 4992–5004.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2024.2362345
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, v. 49, n. 12, p. 5472-5482, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1947310. Acesso em: 09 nov. 2025.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZHANG, Zerui. Solvability and nilpotency of Novikov algebras. Communications in Algebra, v. 48, n. 12, p. 5412-5420, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1789652. Acesso em: 09 nov. 2025.
    • APA

      Shestakov, I. P., & Zhang, Z. (2020). Solvability and nilpotency of Novikov algebras. Communications in Algebra, 48( 12), 5412-5420. doi:10.1080/00927872.2020.1789652
    • NLM

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1789652
    • Vancouver

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1789652
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale e SHESTAKOV, Ivan P. Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, v. 48, n. 7, p. 3091-3098, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1729363. Acesso em: 09 nov. 2025.
    • APA

      Crode, S. D., & Shestakov, I. P. (2020). Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48( 7), 3091-3098. doi:10.1080/00927872.2020.1729363
    • NLM

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1729363
    • Vancouver

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2020.1729363
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, ÁLGEBRA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELOSO, Marcelo e SHESTAKOV, Ivan P. Rings of constants of linear derivations on Fermat rings. Communications in Algebra, v. 46, n. 12, p. 5469-5479, 2018Tradução . . Disponível em: https://doi.org/10.1080/00927872.2018.1469032. Acesso em: 09 nov. 2025.
    • APA

      Veloso, M., & Shestakov, I. P. (2018). Rings of constants of linear derivations on Fermat rings. Communications in Algebra, 46( 12), 5469-5479. doi:10.1080/00927872.2018.1469032
    • NLM

      Veloso M, Shestakov IP. Rings of constants of linear derivations on Fermat rings [Internet]. Communications in Algebra. 2018 ; 46( 12): 5469-5479.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1469032
    • Vancouver

      Veloso M, Shestakov IP. Rings of constants of linear derivations on Fermat rings [Internet]. Communications in Algebra. 2018 ; 46( 12): 5469-5479.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2018.1469032
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, FUNÇÕES AUTOMORFAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAYGORODOV, Ivan e SHESTAKOV, Ivan P e UMIRBAEV, Ualbai U. Free generic Poisson fields and algebras. Communications in Algebra, v. 46, p. 1799-1812, 2017Tradução . . Disponível em: https://doi.org/10.1080/00927872.2017.1358269. Acesso em: 09 nov. 2025.
    • APA

      Kaygorodov, I., Shestakov, I. P., & Umirbaev, U. U. (2017). Free generic Poisson fields and algebras. Communications in Algebra, 46, 1799-1812. doi:10.1080/00927872.2017.1358269
    • NLM

      Kaygorodov I, Shestakov IP, Umirbaev UU. Free generic Poisson fields and algebras [Internet]. Communications in Algebra. 2017 ; 46 1799-1812.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1358269
    • Vancouver

      Kaygorodov I, Shestakov IP, Umirbaev UU. Free generic Poisson fields and algebras [Internet]. Communications in Algebra. 2017 ; 46 1799-1812.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2017.1358269
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Juaci Picanço da e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. On right alternative superalgebras. Communications in Algebra, v. 44, n. 1, p. 240-252, 2016Tradução . . Disponível em: https://doi.org/10.1080/00927872.2014.975344. Acesso em: 09 nov. 2025.
    • APA

      Silva, J. P. da, Murakami, L. S. I., & Shestakov, I. P. (2016). On right alternative superalgebras. Communications in Algebra, 44( 1), 240-252. doi:10.1080/00927872.2014.975344
    • NLM

      Silva JP da, Murakami LSI, Shestakov IP. On right alternative superalgebras [Internet]. Communications in Algebra. 2016 ; 44( 1): 240-252.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2014.975344
    • Vancouver

      Silva JP da, Murakami LSI, Shestakov IP. On right alternative superalgebras [Internet]. Communications in Algebra. 2016 ; 44( 1): 240-252.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2014.975344
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIKHALEV, Alexander A. e SHESTAKOV, Ivan P. PBW-pairs of varieties of linear algebras. Communications in Algebra, v. 42, n. 2, p. 667-687, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.720867. Acesso em: 09 nov. 2025.
    • APA

      Mikhalev, A. A., & Shestakov, I. P. (2014). PBW-pairs of varieties of linear algebras. Communications in Algebra, 42( 2), 667-687. doi:10.1080/00927872.2012.720867
    • NLM

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2012.720867
    • Vancouver

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927872.2012.720867
  • Source: Communications in Algebra. Unidade: IME

    Assunto: DIMENSÃO INFINITA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZAICEV, Mikkhail. Polynomial identities of finite dimensional simple algebras. Communications in Algebra, v. 39, n. 3, p. 929-932, 2011Tradução . . Disponível em: https://doi.org/10.1080/00927870903527600. Acesso em: 09 nov. 2025.
    • APA

      Shestakov, I. P., & Zaicev, M. (2011). Polynomial identities of finite dimensional simple algebras. Communications in Algebra, 39( 3), 929-932. doi:10.1080/00927870903527600
    • NLM

      Shestakov IP, Zaicev M. Polynomial identities of finite dimensional simple algebras [Internet]. Communications in Algebra. 2011 ; 39( 3): 929-932.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870903527600
    • Vancouver

      Shestakov IP, Zaicev M. Polynomial identities of finite dimensional simple algebras [Internet]. Communications in Algebra. 2011 ; 39( 3): 929-932.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870903527600
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZHUKAVETS, Natalia. The universal multiplicative envelope of the free malcev superalgebra on one odd generator. Communications in Algebra, v. 34, n. 4, p. 1319-1344, 2006Tradução . . Disponível em: https://doi.org/10.1080/00927870500454570. Acesso em: 09 nov. 2025.
    • APA

      Shestakov, I. P., & Zhukavets, N. (2006). The universal multiplicative envelope of the free malcev superalgebra on one odd generator. Communications in Algebra, 34( 4), 1319-1344. doi:10.1080/00927870500454570
    • NLM

      Shestakov IP, Zhukavets N. The universal multiplicative envelope of the free malcev superalgebra on one odd generator [Internet]. Communications in Algebra. 2006 ; 34( 4): 1319-1344.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870500454570
    • Vancouver

      Shestakov IP, Zhukavets N. The universal multiplicative envelope of the free malcev superalgebra on one odd generator [Internet]. Communications in Algebra. 2006 ; 34( 4): 1319-1344.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870500454570
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-DIAZ, Miguel Conceptión e SHESTAKOV, Ivan P. Representations of exceptional simple Jordan superalgebras of characteristic 3. Communications in Algebra, v. 33, n. 1, p. 331-337, 2005Tradução . . Disponível em: https://doi.org/10.1081/AGB-200041021. Acesso em: 09 nov. 2025.
    • APA

      López-Diaz, M. C., & Shestakov, I. P. (2005). Representations of exceptional simple Jordan superalgebras of characteristic 3. Communications in Algebra, 33( 1), 331-337. doi:10.1081/AGB-200041021
    • NLM

      López-Diaz MC, Shestakov IP. Representations of exceptional simple Jordan superalgebras of characteristic 3 [Internet]. Communications in Algebra. 2005 ; 33( 1): 331-337.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1081/AGB-200041021
    • Vancouver

      López-Diaz MC, Shestakov IP. Representations of exceptional simple Jordan superalgebras of characteristic 3 [Internet]. Communications in Algebra. 2005 ; 33( 1): 331-337.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1081/AGB-200041021
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-DIAZ, Miguel Conceptión e SHESTAKOV, Ivan P. Alternative superalgebras with DCC on two-sided ideals#. Communications in Algebra, v. 33, n. 10, p. 3479-3487, 2005Tradução . . Disponível em: https://doi.org/10.1080/AGB-200058391. Acesso em: 09 nov. 2025.
    • APA

      López-Diaz, M. C., & Shestakov, I. P. (2005). Alternative superalgebras with DCC on two-sided ideals#. Communications in Algebra, 33( 10), 3479-3487. doi:10.1080/AGB-200058391
    • NLM

      López-Diaz MC, Shestakov IP. Alternative superalgebras with DCC on two-sided ideals# [Internet]. Communications in Algebra. 2005 ; 33( 10): 3479-3487.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/AGB-200058391
    • Vancouver

      López-Diaz MC, Shestakov IP. Alternative superalgebras with DCC on two-sided ideals# [Internet]. Communications in Algebra. 2005 ; 33( 10): 3479-3487.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/AGB-200058391
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAHTURIN, Yuri A e SHESTAKOV, Ivan P. Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras. Communications in Algebra, v. 29, n. 2, p. 4095-4102, 2001Tradução . . Disponível em: https://doi.org/10.1081/AGB-100105990. Acesso em: 09 nov. 2025.
    • APA

      Bahturin, Y. A., & Shestakov, I. P. (2001). Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras. Communications in Algebra, 29( 2), 4095-4102. doi:10.1081/AGB-100105990
    • NLM

      Bahturin YA, Shestakov IP. Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras [Internet]. Communications in Algebra. 2001 ; 29( 2): 4095-4102.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1081/AGB-100105990
    • Vancouver

      Bahturin YA, Shestakov IP. Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras [Internet]. Communications in Algebra. 2001 ; 29( 2): 4095-4102.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1081/AGB-100105990
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMEZ-AMBROSI, Carlos e LALIENA, Jesús e SHESTAKOV, Ivan P. On the Lie structure of the skew elements of a prime superalgebra with superinvolution. Communications in Algebra, v. 28, n. 7, p. 3277-3291, 2000Tradução . . Disponível em: https://doi.org/10.1080/00927870008827024. Acesso em: 09 nov. 2025.
    • APA

      Gomez-Ambrosi, C., Laliena, J., & Shestakov, I. P. (2000). On the Lie structure of the skew elements of a prime superalgebra with superinvolution. Communications in Algebra, 28( 7), 3277-3291. doi:10.1080/00927870008827024
    • NLM

      Gomez-Ambrosi C, Laliena J, Shestakov IP. On the Lie structure of the skew elements of a prime superalgebra with superinvolution [Internet]. Communications in Algebra. 2000 ; 28( 7): 3277-3291.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870008827024
    • Vancouver

      Gomez-Ambrosi C, Laliena J, Shestakov IP. On the Lie structure of the skew elements of a prime superalgebra with superinvolution [Internet]. Communications in Algebra. 2000 ; 28( 7): 3277-3291.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870008827024
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-DIAZ, Miguel Conceptión e SHESTAKOV, Ivan P e SVERCHKOV, Sergei Robertovich. On speciality of Bernstein Jordan algebras. Communications in Algebra, v. 28, n. 9, p. 4375-4387, 2000Tradução . . Disponível em: https://doi.org/10.1080/00927870008827094. Acesso em: 09 nov. 2025.
    • APA

      López-Diaz, M. C., Shestakov, I. P., & Sverchkov, S. R. (2000). On speciality of Bernstein Jordan algebras. Communications in Algebra, 28( 9), 4375-4387. doi:10.1080/00927870008827094
    • NLM

      López-Diaz MC, Shestakov IP, Sverchkov SR. On speciality of Bernstein Jordan algebras [Internet]. Communications in Algebra. 2000 ; 28( 9): 4375-4387.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870008827094
    • Vancouver

      López-Diaz MC, Shestakov IP, Sverchkov SR. On speciality of Bernstein Jordan algebras [Internet]. Communications in Algebra. 2000 ; 28( 9): 4375-4387.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1080/00927870008827094

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025