Filtros : "Advances in Mathematics" "Financiamento FAPESP" Limpar

Filtros



Limitar por data


  • Fonte: Advances in Mathematics. Unidade: IME

    Assuntos: GRUPOS DE LIE, GEOMETRIA DIFERENCIAL

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio e KOLLROSS, Andreas e WILKING, Burkhard. Actions on positively curved manifolds and boundary in the orbit space. Advances in Mathematics, v. 441, n. artigo 109557, p. 1-29, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2024.109557. Acesso em: 10 nov. 2025.
    • APA

      Gorodski, C., Kollross, A., & Wilking, B. (2024). Actions on positively curved manifolds and boundary in the orbit space. Advances in Mathematics, 441( artigo 109557), 1-29. doi:10.1016/j.aim.2024.109557
    • NLM

      Gorodski C, Kollross A, Wilking B. Actions on positively curved manifolds and boundary in the orbit space [Internet]. Advances in Mathematics. 2024 ; 441( artigo 109557): 1-29.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2024.109557
    • Vancouver

      Gorodski C, Kollross A, Wilking B. Actions on positively curved manifolds and boundary in the orbit space [Internet]. Advances in Mathematics. 2024 ; 441( artigo 109557): 1-29.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2024.109557
  • Fonte: Advances in Mathematics. Unidade: IME

    Assuntos: TOPOLOGIA DINÂMICA, SISTEMAS DINÂMICOS, MECÂNICA ESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBIERI, Sebastián et al. Zero-temperature chaos in bidimensional models with finite-range potentials. Advances in Mathematics, v. 457, p. 1-51, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2024.109906. Acesso em: 10 nov. 2025.
    • APA

      Barbieri, S., Bissacot, R., Vedove, G. D., & Thieullen, P. (2024). Zero-temperature chaos in bidimensional models with finite-range potentials. Advances in Mathematics, 457, 1-51. doi:10.1016/j.aim.2024.109906
    • NLM

      Barbieri S, Bissacot R, Vedove GD, Thieullen P. Zero-temperature chaos in bidimensional models with finite-range potentials [Internet]. Advances in Mathematics. 2024 ; 457 1-51.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2024.109906
    • Vancouver

      Barbieri S, Bissacot R, Vedove GD, Thieullen P. Zero-temperature chaos in bidimensional models with finite-range potentials [Internet]. Advances in Mathematics. 2024 ; 457 1-51.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2024.109906
  • Fonte: Advances in Mathematics. Unidade: IME

    Assuntos: ANÁLISE DE FOURIER, GEOMETRIA CONVEXA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AKOPYAN, Arseniy e BÁRÁNY, Imre e ROBINS, Sinai. Algebraic vertices of non-convex polyhedra. Advances in Mathematics, v. 308, p. 627-644, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2016.12.026. Acesso em: 10 nov. 2025.
    • APA

      Akopyan, A., Bárány, I., & Robins, S. (2017). Algebraic vertices of non-convex polyhedra. Advances in Mathematics, 308, 627-644. doi:10.1016/j.aim.2016.12.026
    • NLM

      Akopyan A, Bárány I, Robins S. Algebraic vertices of non-convex polyhedra [Internet]. Advances in Mathematics. 2017 ; 308 627-644.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2016.12.026
    • Vancouver

      Akopyan A, Bárány I, Robins S. Algebraic vertices of non-convex polyhedra [Internet]. Advances in Mathematics. 2017 ; 308 627-644.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2016.12.026

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025