Filtros : "Advances in Applied Probability" "PROCESSOS ESTOCÁSTICOS" Removido: "2007" Limpar

Filtros



Refine with date range


  • Source: Advances in Applied Probability. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      UQUILLAS, Adriana e SIMONIS, Adilson. First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds. Advances in Applied Probability, v. 51, n. 3, p. 717-744, 2019Tradução . . Disponível em: https://doi.org/10.1017/apr.2019.31. Acesso em: 07 nov. 2025.
    • APA

      Uquillas, A., & Simonis, A. (2019). First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds. Advances in Applied Probability, 51( 3), 717-744. doi:10.1017/apr.2019.31
    • NLM

      Uquillas A, Simonis A. First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds [Internet]. Advances in Applied Probability. 2019 ; 51( 3): 717-744.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1017/apr.2019.31
    • Vancouver

      Uquillas A, Simonis A. First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds [Internet]. Advances in Applied Probability. 2019 ; 51( 3): 717-744.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1017/apr.2019.31
  • Source: Advances in Applied Probability. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PASSEIOS ALEATÓRIOS, PROCESSOS DE RAMIFICAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERTACCHI, Daniela e MACHADO, Fábio Prates e ZUCCA, Fabio. Local and global survival for nonhomogeneous random walk systems on Z. Advances in Applied Probability, v. 46, n. 1, p. 256-278, 2014Tradução . . Disponível em: https://doi.org/10.1239/aap/1396360113. Acesso em: 07 nov. 2025.
    • APA

      Bertacchi, D., Machado, F. P., & Zucca, F. (2014). Local and global survival for nonhomogeneous random walk systems on Z. Advances in Applied Probability, 46( 1), 256-278. doi:10.1239/aap/1396360113
    • NLM

      Bertacchi D, Machado FP, Zucca F. Local and global survival for nonhomogeneous random walk systems on Z [Internet]. Advances in Applied Probability. 2014 ; 46( 1): 256-278.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1239/aap/1396360113
    • Vancouver

      Bertacchi D, Machado FP, Zucca F. Local and global survival for nonhomogeneous random walk systems on Z [Internet]. Advances in Applied Probability. 2014 ; 46( 1): 256-278.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1239/aap/1396360113
  • Source: Advances in Applied Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e MARTINEZ, Servet e PICCO, Picco. Existence of non-trivial quasi stationary distribution in the birth-dieth chain. Advances in Applied Probability, v. 24, n. 4 , p. 795-813, 1992Tradução . . Disponível em: https://doi.org/10.2307/1427713. Acesso em: 07 nov. 2025.
    • APA

      Ferrari, P. A., Martinez, S., & Picco, P. (1992). Existence of non-trivial quasi stationary distribution in the birth-dieth chain. Advances in Applied Probability, 24( 4 ), 795-813. doi:10.2307/1427713
    • NLM

      Ferrari PA, Martinez S, Picco P. Existence of non-trivial quasi stationary distribution in the birth-dieth chain [Internet]. Advances in Applied Probability. 1992 ; 24( 4 ): 795-813.[citado 2025 nov. 07 ] Available from: https://doi.org/10.2307/1427713
    • Vancouver

      Ferrari PA, Martinez S, Picco P. Existence of non-trivial quasi stationary distribution in the birth-dieth chain [Internet]. Advances in Applied Probability. 1992 ; 24( 4 ): 795-813.[citado 2025 nov. 07 ] Available from: https://doi.org/10.2307/1427713

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025