Filtros : "Financiamento JSPS" "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, GRUPOS ABELIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e FUKASAWA, Satoru. An elementary abelian p-cover of the Hermitian curve with many automorphisms. Mathematische Zeitschrift, v. 302, n. 2, p. 695-706, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-022-03083-8. Acesso em: 08 nov. 2025.
    • APA

      Borges, H., & Fukasawa, S. (2022). An elementary abelian p-cover of the Hermitian curve with many automorphisms. Mathematische Zeitschrift, 302( 2), 695-706. doi:10.1007/s00209-022-03083-8
    • NLM

      Borges H, Fukasawa S. An elementary abelian p-cover of the Hermitian curve with many automorphisms [Internet]. Mathematische Zeitschrift. 2022 ; 302( 2): 695-706.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00209-022-03083-8
    • Vancouver

      Borges H, Fukasawa S. An elementary abelian p-cover of the Hermitian curve with many automorphisms [Internet]. Mathematische Zeitschrift. 2022 ; 302( 2): 695-706.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1007/s00209-022-03083-8
  • Source: Journal of Knot Theory and its Ramifications. Unidade: ICMC

    Subjects: GEOMETRIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KORINMAN, Julien e QUESNEY, Alexandre Thomas Guillaume. The quantum trace as a quantum non-abelianization map. Journal of Knot Theory and its Ramifications, v. 31, n. 6, p. 2250032-1-2250032-49, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218216522500328. Acesso em: 08 nov. 2025.
    • APA

      Korinman, J., & Quesney, A. T. G. (2022). The quantum trace as a quantum non-abelianization map. Journal of Knot Theory and its Ramifications, 31( 6), 2250032-1-2250032-49. doi:10.1142/S0218216522500328
    • NLM

      Korinman J, Quesney ATG. The quantum trace as a quantum non-abelianization map [Internet]. Journal of Knot Theory and its Ramifications. 2022 ; 31( 6): 2250032-1-2250032-49.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1142/S0218216522500328
    • Vancouver

      Korinman J, Quesney ATG. The quantum trace as a quantum non-abelianization map [Internet]. Journal of Knot Theory and its Ramifications. 2022 ; 31( 6): 2250032-1-2250032-49.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1142/S0218216522500328
  • Source: SIAM Journal on Numerical Analysis. Unidade: ICMC

    Subjects: MÉTODOS NUMÉRICOS, MECÂNICA DOS FLUÍDOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEDEIROS, Débora de Oliveira e NOTSU, Hirofumi e OISHI, Cassio Machiaveli. Second-order finite difference approximations of the upper-convected time derivative. SIAM Journal on Numerical Analysis, v. 59, n. 6, p. 2955-2988, 2021Tradução . . Disponível em: https://doi.org/10.1137/20M1364990. Acesso em: 08 nov. 2025.
    • APA

      Medeiros, D. de O., Notsu, H., & Oishi, C. M. (2021). Second-order finite difference approximations of the upper-convected time derivative. SIAM Journal on Numerical Analysis, 59( 6), 2955-2988. doi:10.1137/20M1364990
    • NLM

      Medeiros D de O, Notsu H, Oishi CM. Second-order finite difference approximations of the upper-convected time derivative [Internet]. SIAM Journal on Numerical Analysis. 2021 ; 59( 6): 2955-2988.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1137/20M1364990
    • Vancouver

      Medeiros D de O, Notsu H, Oishi CM. Second-order finite difference approximations of the upper-convected time derivative [Internet]. SIAM Journal on Numerical Analysis. 2021 ; 59( 6): 2955-2988.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1137/20M1364990

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025