Filtros : "Financiamento FAPESP" "Journal of Differential Equations" "Carvalho, Alexandre Nolasco de" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, v. 416, n. Ja 2025, p. 1462-1495, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.10.029. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Lappicy, P., Moreira, E. M., & Oliveira-Sousa, A. do N. (2025). A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, 416( Ja 2025), 1462-1495. doi:10.1016/j.jde.2024.10.029
    • NLM

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
    • Vancouver

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAMANI LUNA, Tito Luciano e CARVALHO, Alexandre Nolasco de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption. Journal of Differential Equations, v. No 2023, p. 446-475, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.07.026. Acesso em: 08 out. 2025.
    • APA

      Mamani Luna, T. L., & Carvalho, A. N. de. (2023). A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption. Journal of Differential Equations, No 2023, 446-475. doi:10.1016/j.jde.2023.07.026
    • NLM

      Mamani Luna TL, Carvalho AN de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption [Internet]. Journal of Differential Equations. 2023 ; No 2023 446-475.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.07.026
    • Vancouver

      Mamani Luna TL, Carvalho AN de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption [Internet]. Journal of Differential Equations. 2023 ; No 2023 446-475.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.07.026
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, v. No 2021, p. 312-336, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.07.044. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025