Filtros : "Financiamento FAPESP" "Journal of Chemical Information and Modeling" "Quiles, Marcos G." Limpar

Filtros



Limitar por data


  • Fonte: Journal of Chemical Information and Modeling. Unidades: FFCLRP, IQSC

    Assuntos: ÍONS ELETRÔNICOS, ESTRUTURA ATÔMICA (QUÍMICA TEÓRICA), ENERGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Alex S. et al. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4702–4712, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00748. Acesso em: 08 out. 2025.
    • APA

      Moraes, A. S., Pinheiro, G. A., Lourenço, T. da C., Lopes, M. C., Quiles, M. G., Dias, L. G., & Silva, J. L. F. da. (2022). Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, 62( 19), 4702–4712. doi:10.1021/acs.jcim.2c00748
    • NLM

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
    • Vancouver

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: COMBUSTÍVEIS, COBRE, NANOCOMPOSITOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDONÇA, João Paulo A. de et al. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, v. 27, p. 5503-5512, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00957. Acesso em: 08 out. 2025.
    • APA

      Mendonça, J. P. A. de, Calderan, F. V., Lourenço, T. da C., Quiles, M. G., & Silva, J. L. F. da. (2022). Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, 27, 5503-5512. doi:10.1021/acs.jcim.2c00957
    • NLM

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957
    • Vancouver

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: METAIS, ADSORÇÃO, FÍSICO-QUÍMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Krys E. A. et al. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, v. 61, n. 5, p. 2294–2301, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00097. Acesso em: 08 out. 2025.
    • APA

      Batista, K. E. A., Soares, M. D., Quiles, M. G., Piotrowski, M. J., & Da Silva, J. L. F. (2021). Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, 61( 5), 2294–2301. doi:10.1021/acs.jcim.1c00097
    • NLM

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
    • Vancouver

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, ALGORITMOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Luis Cesar de et al. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, v. 61, p. 4210−4223, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00503. Acesso em: 08 out. 2025.
    • APA

      Azevedo, L. C. de, Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Prati, R. C. (2021). Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, 61, 4210−4223. doi:10.1021/acs.jcim.1c00503
    • NLM

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
    • Vancouver

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025