Filtros : "Financiamento FAPESP" "Journal of Chemical Information and Modeling" "MODELAGEM MOLECULAR" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: INTELIGÊNCIA ARTIFICIAL, MODELAGEM MOLECULAR, MOLÉCULA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Victor Henrique Rabesquine et al. Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, v. 65, n. 4, p. 1911-1927 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.4c01876. Acesso em: 08 out. 2025.
    • APA

      Nogueira, V. H. R., Sharma, R., Guido, R. V. C., & Keiser, M. J. (2025). Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, 65( 4), 1911-1927 + supporting information. doi:10.1021/acs.jcim.4c01876
    • NLM

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
    • Vancouver

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, SIMULAÇÃO, MODELAGEM MOLECULAR, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KARMAKAR, Tarak e SOARES, Thereza Amélia e MERZ JR, Kenneth M. Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.4c00537. Acesso em: 08 out. 2025. , 2024
    • APA

      Karmakar, T., Soares, T. A., & Merz Jr, K. M. (2024). Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.4c00537
    • NLM

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
    • Vancouver

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: MODELAGEM MOLECULAR, MOLÉCULA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, v. 62, n. 17, p. 3948–3960, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00521. Acesso em: 08 out. 2025.
    • APA

      Pinheiro, G. A., Silva, J. L. F. da, & Quiles, M. G. (2022). SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, 62( 17), 3948–3960. doi:10.1021/acs.jcim.2c00521
    • NLM

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
    • Vancouver

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025