Dealing with cycles in graph-based probabilistic models: the case of Logical Credal Networks (2025)
Source: Proceedings of Machine Learning Research PMLR. Conference titles: International Symposium on Imprecise Probabilities: Theories and Applications - ISIPTA 2025. Unidades: EP, IME
Subjects: MODELOS PARA PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV
ABNT
COZMAN, Fabio Gagliardi et al. Dealing with cycles in graph-based probabilistic models: the case of Logical Credal Networks. Proceedings of Machine Learning Research PMLR. Cambridge: MLResearch Press. Disponível em: https://proceedings.mlr.press/v290/cozman25a.html. Acesso em: 08 out. 2025. , 2025APA
Cozman, F. G., Marinescu, R., Lee, J., Gray, A., & Mauá, D. D. (2025). Dealing with cycles in graph-based probabilistic models: the case of Logical Credal Networks. Proceedings of Machine Learning Research PMLR. Cambridge: MLResearch Press. Recuperado de https://proceedings.mlr.press/v290/cozman25a.htmlNLM
Cozman FG, Marinescu R, Lee J, Gray A, Mauá DD. Dealing with cycles in graph-based probabilistic models: the case of Logical Credal Networks [Internet]. Proceedings of Machine Learning Research PMLR. 2025 ; 290 93-102.[citado 2025 out. 08 ] Available from: https://proceedings.mlr.press/v290/cozman25a.htmlVancouver
Cozman FG, Marinescu R, Lee J, Gray A, Mauá DD. Dealing with cycles in graph-based probabilistic models: the case of Logical Credal Networks [Internet]. Proceedings of Machine Learning Research PMLR. 2025 ; 290 93-102.[citado 2025 out. 08 ] Available from: https://proceedings.mlr.press/v290/cozman25a.html