Filtros : "Financiamento FAPESP" "ICMC" "SILVA, GUILHERME LIMA FERREIRA DA" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEOREMA DO PONTO FIXO, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAIK, Jinho e PROKHOROV, Andrei e SILVA, Guilherme Lima Ferreira da. Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, v. 401, n. 2, p. 1753-1806, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04683-z. Acesso em: 08 out. 2025.
    • APA

      Baik, J., Prokhorov, A., & Silva, G. L. F. da. (2023). Differential equations for the KPZ and periodic KPZ fixed points. Communications in Mathematical Physics, 401( 2), 1753-1806. doi:10.1007/s00220-023-04683-z
    • NLM

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
    • Vancouver

      Baik J, Prokhorov A, Silva GLF da. Differential equations for the KPZ and periodic KPZ fixed points [Internet]. Communications in Mathematical Physics. 2023 ; 401( 2): 1753-1806.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00220-023-04683-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES INTEGRO-DIFERENCIAIS, MATRIZES, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GHOSAL, Promit e SILVA, Guilherme Lima Ferreira da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, v. 397, n. 3, p. 1237-1307, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-022-04518-3. Acesso em: 08 out. 2025.
    • APA

      Ghosal, P., & Silva, G. L. F. da. (2023). Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, 397( 3), 1237-1307. doi:10.1007/s00220-022-04518-3
    • NLM

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
    • Vancouver

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
  • Source: Caderno de resumos. Conference titles: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Subjects: MATRIZES, VALORES PRÓPRIOS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Ester Beatriz de Souza dos. Prevendo a aleatoriedade. 2022, Anais.. São Carlos: ICMC-USP, 2022. Disponível em: https://sites.google.com/usp.br/sim2022/pagina-inicial. Acesso em: 08 out. 2025.
    • APA

      Santos, E. B. de S. dos. (2022). Prevendo a aleatoriedade. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de https://sites.google.com/usp.br/sim2022/pagina-inicial
    • NLM

      Santos EB de S dos. Prevendo a aleatoriedade [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 08 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
    • Vancouver

      Santos EB de S dos. Prevendo a aleatoriedade [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 08 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
  • Source: Caderno de resumos. Conference titles: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Subjects: POLINÔMIOS ORTOGONAIS, ANÁLISE ASSINTÓTICA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PASSARELLI, Gabriel. Polinômios Kissing via problemas de Riemann-Hilbert. 2022, Anais.. São Carlos: ICMC-USP, 2022. Disponível em: https://sites.google.com/usp.br/sim2022/pagina-inicial. Acesso em: 08 out. 2025.
    • APA

      Passarelli, G. (2022). Polinômios Kissing via problemas de Riemann-Hilbert. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de https://sites.google.com/usp.br/sim2022/pagina-inicial
    • NLM

      Passarelli G. Polinômios Kissing via problemas de Riemann-Hilbert [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 08 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
    • Vancouver

      Passarelli G. Polinômios Kissing via problemas de Riemann-Hilbert [Internet]. Caderno de resumos. 2022 ;[citado 2025 out. 08 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
  • Source: Annales de l’Institut Henri Poincaré : Probabilités et Statistiques. Unidade: ICMC

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), SISTEMAS HAMILTONIANOS, SISTEMAS LAGRANGIANOS, EQUAÇÕES INTEGRO-DIFERENCIAIS, MECÂNICA ESTATÍSTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAIK, Jinho e LIU, Zhipeng e SILVA, Guilherme Lima Ferreira da. Limiting one-point distribution of periodic TASEP. Annales de l’Institut Henri Poincaré : Probabilités et Statistiques, v. 58, n. 1, p. 248-302, 2022Tradução . . Disponível em: https://doi.org/10.1214/21-AIHP1171. Acesso em: 08 out. 2025.
    • APA

      Baik, J., Liu, Z., & Silva, G. L. F. da. (2022). Limiting one-point distribution of periodic TASEP. Annales de l’Institut Henri Poincaré : Probabilités et Statistiques, 58( 1), 248-302. doi:10.1214/21-AIHP1171
    • NLM

      Baik J, Liu Z, Silva GLF da. Limiting one-point distribution of periodic TASEP [Internet]. Annales de l’Institut Henri Poincaré : Probabilités et Statistiques. 2022 ; 58( 1): 248-302.[citado 2025 out. 08 ] Available from: https://doi.org/10.1214/21-AIHP1171
    • Vancouver

      Baik J, Liu Z, Silva GLF da. Limiting one-point distribution of periodic TASEP [Internet]. Annales de l’Institut Henri Poincaré : Probabilités et Statistiques. 2022 ; 58( 1): 248-302.[citado 2025 out. 08 ] Available from: https://doi.org/10.1214/21-AIHP1171
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-FINKELSHTEIN, Andrei e SILVA, Guilherme Lima Ferreira da. Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, v. 383, n. 3, p. 2163-2242, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03999-y. Acesso em: 08 out. 2025.
    • APA

      Martínez-Finkelshtein, A., & Silva, G. L. F. da. (2021). Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, 383( 3), 2163-2242. doi:10.1007/s00220-021-03999-y
    • NLM

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00220-021-03999-y
    • Vancouver

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00220-021-03999-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025