Filtros : "Financiamento FAPESP" "Journal of Chemical Information and Modeling" "MOLÉCULA" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: IQ

    Subjects: BIOQUÍMICA INORGÂNICA, MOLÉCULA, PEPTÍDEOS, PROTEÍNAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMILO, Sofia Rodrigues Guedes e ARANTES, Guilherme Menegon. Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1. Journal of Chemical Information and Modeling, v. 65, n. 12, p. 6184-6197, 2025Tradução . . Disponível em: https://dx.doi.org/10.1021/acs.jcim.5c00655. Acesso em: 08 out. 2025.
    • APA

      Camilo, S. R. G., & Arantes, G. M. (2025). Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1. Journal of Chemical Information and Modeling, 65( 12), 6184-6197. doi:10.1021/acs.jcim.5c00655
    • NLM

      Camilo SRG, Arantes GM. Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 12): 6184-6197.[citado 2025 out. 08 ] Available from: https://dx.doi.org/10.1021/acs.jcim.5c00655
    • Vancouver

      Camilo SRG, Arantes GM. Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 12): 6184-6197.[citado 2025 out. 08 ] Available from: https://dx.doi.org/10.1021/acs.jcim.5c00655
  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: INTELIGÊNCIA ARTIFICIAL, MODELAGEM MOLECULAR, MOLÉCULA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Victor Henrique Rabesquine et al. Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, v. 65, n. 4, p. 1911-1927 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.4c01876. Acesso em: 08 out. 2025.
    • APA

      Nogueira, V. H. R., Sharma, R., Guido, R. V. C., & Keiser, M. J. (2025). Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, 65( 4), 1911-1927 + supporting information. doi:10.1021/acs.jcim.4c01876
    • NLM

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
    • Vancouver

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: ENERGIA, MOLÉCULA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Andre F e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, v. 62, p. 817−828, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c01573. Acesso em: 08 out. 2025.
    • APA

      Oliveira, A. F., Silva, J. L. F. da, & Quiles, M. G. (2022). Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, 62, 817−828. doi:10.1021/acs.jcim.1c01573
    • NLM

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
    • Vancouver

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: MODELAGEM MOLECULAR, MOLÉCULA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, v. 62, n. 17, p. 3948–3960, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00521. Acesso em: 08 out. 2025.
    • APA

      Pinheiro, G. A., Silva, J. L. F. da, & Quiles, M. G. (2022). SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, 62( 17), 3948–3960. doi:10.1021/acs.jcim.2c00521
    • NLM

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
    • Vancouver

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: LIPÍDEOS, ELETROSTÁTICA, MOLÉCULA, QUÍMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Rafael Maglia de et al. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 522-536, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00790. Acesso em: 08 out. 2025.
    • APA

      Souza, R. M. de, Ratochinski, R. H., Karttunen, M., & Dias, L. G. (2020). Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles. Journal of Chemical Information and Modeling, 60( 2), 522-536. doi:10.1021/acs.jcim.9b00790
    • NLM

      Souza RM de, Ratochinski RH, Karttunen M, Dias LG. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 522-536.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00790
    • Vancouver

      Souza RM de, Ratochinski RH, Karttunen M, Dias LG. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 522-536.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00790

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025