Filtros : "Financiamento FAPESP" "International Journal of Bifurcation and Chaos" Removido: "ALVA, SONIA ISABEL RENTERIA" Limpar

Filtros



Refine with date range


  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 08 out. 2025.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: International Journal of Bifurcation and Chaos. Unidade: IF

    Subjects: TOKAMAKS, ENTROPIA, CAMPO MAGNÉTICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAERTER, Pedro et al. Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear. International Journal of Bifurcation and Chaos, v. 33, n. 9, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0218127423300227. Acesso em: 08 out. 2025.
    • APA

      Haerter, P., Souza, L. C. de, Mathias, A. C., Viana, R. L., & Caldas, I. L. (2023). Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear. International Journal of Bifurcation and Chaos, 33( 9). doi:10.1142/S0218127423300227
    • NLM

      Haerter P, Souza LC de, Mathias AC, Viana RL, Caldas IL. Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear [Internet]. International Journal of Bifurcation and Chaos. 2023 ; 33( 9):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127423300227
    • Vancouver

      Haerter P, Souza LC de, Mathias AC, Viana RL, Caldas IL. Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear [Internet]. International Journal of Bifurcation and Chaos. 2023 ; 33( 9):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127423300227
  • Source: International Journal of Bifurcation and Chaos. Unidade: IF

    Assunto: TOKAMAKS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATHIAS, A C et al. Fractal Structures and Magnetic Footprints in a Divertor Tokamak. International Journal of Bifurcation and Chaos, v. 32, n. 6, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021812742250078X. Acesso em: 08 out. 2025.
    • APA

      Mathias, A. C., Perotto, G., Viana, R. L., Schelin, A., & Caldas, I. L. (2022). Fractal Structures and Magnetic Footprints in a Divertor Tokamak. International Journal of Bifurcation and Chaos, 32( 6). doi:10.1142/S021812742250078X
    • NLM

      Mathias AC, Perotto G, Viana RL, Schelin A, Caldas IL. Fractal Structures and Magnetic Footprints in a Divertor Tokamak [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 6):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021812742250078X
    • Vancouver

      Mathias AC, Perotto G, Viana RL, Schelin A, Caldas IL. Fractal Structures and Magnetic Footprints in a Divertor Tokamak [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 6):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021812742250078X
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 08 out. 2025.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Source: International Journal of Bifurcation and Chaos. Unidade: IF

    Assunto: CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUGNAGO, Eduardo Luís e FELICIO, C C e BEIMS, M W. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model. International Journal of Bifurcation and Chaos, v. 32, n. 13, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422300312. Acesso em: 08 out. 2025.
    • APA

      Brugnago, E. L., Felicio, C. C., & Beims, M. W. (2022). Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model. International Journal of Bifurcation and Chaos, 32( 13). doi:10.1142/S0218127422300312
    • NLM

      Brugnago EL, Felicio CC, Beims MW. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 13):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422300312
    • Vancouver

      Brugnago EL, Felicio CC, Beims MW. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 13):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422300312

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025