Filtros : "Financiamento FAPESP" "International Journal of Bifurcation and Chaos" Removido: "Mota, Marcos Coutinho" Limpar

Filtros



Limitar por data


  • Fonte: International Journal of Bifurcation and Chaos. Unidade: IME

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RENTERIA ALVA, Sonia Isabel e MEREU, Ana Cristina. Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles. International Journal of Bifurcation and Chaos, v. 35, n. 8, p. 1-10, 2025Tradução . . Disponível em: https://doi.org/10.1142/S0218127425500907. Acesso em: 08 out. 2025.
    • APA

      Renteria Alva, S. I., & Mereu, A. C. (2025). Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles. International Journal of Bifurcation and Chaos, 35( 8), 1-10. doi:10.1142/S0218127425500907
    • NLM

      Renteria Alva SI, Mereu AC. Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles [Internet]. International Journal of Bifurcation and Chaos. 2025 ; 35( 8): 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127425500907
    • Vancouver

      Renteria Alva SI, Mereu AC. Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles [Internet]. International Journal of Bifurcation and Chaos. 2025 ; 35( 8): 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127425500907
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: IF

    Assuntos: TOKAMAKS, ENTROPIA, CAMPO MAGNÉTICO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAERTER, Pedro et al. Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear. International Journal of Bifurcation and Chaos, v. 33, n. 9, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0218127423300227. Acesso em: 08 out. 2025.
    • APA

      Haerter, P., Souza, L. C. de, Mathias, A. C., Viana, R. L., & Caldas, I. L. (2023). Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear. International Journal of Bifurcation and Chaos, 33( 9). doi:10.1142/S0218127423300227
    • NLM

      Haerter P, Souza LC de, Mathias AC, Viana RL, Caldas IL. Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear [Internet]. International Journal of Bifurcation and Chaos. 2023 ; 33( 9):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127423300227
    • Vancouver

      Haerter P, Souza LC de, Mathias AC, Viana RL, Caldas IL. Basin Entropy and Wada Property of Magnetic Field Line Escape in Toroidal Plasmas with Reversed Shear [Internet]. International Journal of Bifurcation and Chaos. 2023 ; 33( 9):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127423300227
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: IF

    Assunto: TOKAMAKS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATHIAS, A C et al. Fractal Structures and Magnetic Footprints in a Divertor Tokamak. International Journal of Bifurcation and Chaos, v. 32, n. 6, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021812742250078X. Acesso em: 08 out. 2025.
    • APA

      Mathias, A. C., Perotto, G., Viana, R. L., Schelin, A., & Caldas, I. L. (2022). Fractal Structures and Magnetic Footprints in a Divertor Tokamak. International Journal of Bifurcation and Chaos, 32( 6). doi:10.1142/S021812742250078X
    • NLM

      Mathias AC, Perotto G, Viana RL, Schelin A, Caldas IL. Fractal Structures and Magnetic Footprints in a Divertor Tokamak [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 6):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021812742250078X
    • Vancouver

      Mathias AC, Perotto G, Viana RL, Schelin A, Caldas IL. Fractal Structures and Magnetic Footprints in a Divertor Tokamak [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 6):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S021812742250078X
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Assuntos: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 08 out. 2025.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: IF

    Assunto: CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUGNAGO, Eduardo Luís e FELICIO, C C e BEIMS, M W. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model. International Journal of Bifurcation and Chaos, v. 32, n. 13, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422300312. Acesso em: 08 out. 2025.
    • APA

      Brugnago, E. L., Felicio, C. C., & Beims, M. W. (2022). Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model. International Journal of Bifurcation and Chaos, 32( 13). doi:10.1142/S0218127422300312
    • NLM

      Brugnago EL, Felicio CC, Beims MW. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 13):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422300312
    • Vancouver

      Brugnago EL, Felicio CC, Beims MW. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 13):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422300312

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025