Filtros : "Financiamento FAPESP" "International Journal of Bifurcation and Chaos" Removido: "TOKAMAKS" Limpar

Filtros



Refine with date range


  • Source: International Journal of Bifurcation and Chaos. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RENTERIA ALVA, Sonia Isabel e MEREU, Ana Cristina. Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles. International Journal of Bifurcation and Chaos, v. 35, n. 8, p. 1-10, 2025Tradução . . Disponível em: https://doi.org/10.1142/S0218127425500907. Acesso em: 08 out. 2025.
    • APA

      Renteria Alva, S. I., & Mereu, A. C. (2025). Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles. International Journal of Bifurcation and Chaos, 35( 8), 1-10. doi:10.1142/S0218127425500907
    • NLM

      Renteria Alva SI, Mereu AC. Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles [Internet]. International Journal of Bifurcation and Chaos. 2025 ; 35( 8): 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127425500907
    • Vancouver

      Renteria Alva SI, Mereu AC. Crossing limit cycles from discontinuous piecewise linear differential centers separated by two circles [Internet]. International Journal of Bifurcation and Chaos. 2025 ; 35( 8): 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127425500907
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 08 out. 2025.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 08 out. 2025.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Source: International Journal of Bifurcation and Chaos. Unidade: IF

    Assunto: CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUGNAGO, Eduardo Luís e FELICIO, C C e BEIMS, M W. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model. International Journal of Bifurcation and Chaos, v. 32, n. 13, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422300312. Acesso em: 08 out. 2025.
    • APA

      Brugnago, E. L., Felicio, C. C., & Beims, M. W. (2022). Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model. International Journal of Bifurcation and Chaos, 32( 13). doi:10.1142/S0218127422300312
    • NLM

      Brugnago EL, Felicio CC, Beims MW. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 13):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422300312
    • Vancouver

      Brugnago EL, Felicio CC, Beims MW. Forecasting the Duration of Three Connected Wings in a Generalized Lorenz Model [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 13):[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S0218127422300312

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025