Filtros : "Financiamento FAPESP" "Indexado no zbMATH Open" "GEOMETRIA SIMPLÉTICA" Limpar

Filtros



Refine with date range


  • Source: Letters in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, GEOMETRIA SIMPLÉTICA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHUÑO VIZARRETA, Eber Daniel et al. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. Letters in Mathematical Physics, v. 115, n. 4, p. 1-22, 2025Tradução . . Disponível em: https://doi.org/10.1007/s11005-025-01970-9. Acesso em: 08 out. 2025.
    • APA

      Chuño Vizarreta, E. D., Falqui, G., Mencattini, I., & Pedroni, M. (2025). Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. Letters in Mathematical Physics, 115( 4), 1-22. doi:10.1007/s11005-025-01970-9
    • NLM

      Chuño Vizarreta ED, Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations [Internet]. Letters in Mathematical Physics. 2025 ; 115( 4): 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11005-025-01970-9
    • Vancouver

      Chuño Vizarreta ED, Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations [Internet]. Letters in Mathematical Physics. 2025 ; 115( 4): 1-22.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s11005-025-01970-9
  • Source: Journal of Geometry. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, SUBVARIEDADES, GEOMETRIA SIMPLÉTICA

    Disponível em 2026-05-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e ROMERO FUSTER, Maria Del Carmen e ZANARDO, Maria Carolina. Geometrical characterizations of singularities of the Gauss map on generically immersed 3-manifolds in R⁴. Journal of Geometry, v. 116, n. 1, p. 1-21, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00022-025-00743-y. Acesso em: 08 out. 2025.
    • APA

      Nabarro, A. C., Romero Fuster, M. D. C., & Zanardo, M. C. (2025). Geometrical characterizations of singularities of the Gauss map on generically immersed 3-manifolds in R⁴. Journal of Geometry, 116( 1), 1-21. doi:10.1007/s00022-025-00743-y
    • NLM

      Nabarro AC, Romero Fuster MDC, Zanardo MC. Geometrical characterizations of singularities of the Gauss map on generically immersed 3-manifolds in R⁴ [Internet]. Journal of Geometry. 2025 ; 116( 1): 1-21.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00022-025-00743-y
    • Vancouver

      Nabarro AC, Romero Fuster MDC, Zanardo MC. Geometrical characterizations of singularities of the Gauss map on generically immersed 3-manifolds in R⁴ [Internet]. Journal of Geometry. 2025 ; 116( 1): 1-21.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00022-025-00743-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025