Filtros : "Financiamento FAPESP" "EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS" Removido: "Brasil" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e YANG, Minbo e ZHAO, Shunneng. Quantitative profile decomposition and stability for a nonlocal Sobolev inequality. Journal of Differential Equations, v. 417, p. 64-104, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.11.013. Acesso em: 08 out. 2025.
    • APA

      Piccione, P., Yang, M., & Zhao, S. (2025). Quantitative profile decomposition and stability for a nonlocal Sobolev inequality. Journal of Differential Equations, 417, 64-104. doi:10.1016/j.jde.2024.11.013
    • NLM

      Piccione P, Yang M, Zhao S. Quantitative profile decomposition and stability for a nonlocal Sobolev inequality [Internet]. Journal of Differential Equations. 2025 ; 417 64-104.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.11.013
    • Vancouver

      Piccione P, Yang M, Zhao S. Quantitative profile decomposition and stability for a nonlocal Sobolev inequality [Internet]. Journal of Differential Equations. 2025 ; 417 64-104.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.11.013
  • Source: Revista Matemática Complutense. Unidade: IME

    Subjects: ELIPSE, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Patricia Neves de e NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks. Revista Matemática Complutense, p. 1-41, 2025Tradução . . Disponível em: https://doi.org/10.1007/s13163-025-00548-2. Acesso em: 08 out. 2025.
    • APA

      Araujo, P. N. de, Nakasato, J. C., & Pereira, M. C. (2025). A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks. Revista Matemática Complutense, 1-41. doi:10.1007/s13163-025-00548-2
    • NLM

      Araujo PN de, Nakasato JC, Pereira MC. A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks [Internet]. Revista Matemática Complutense. 2025 ; 1-41.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s13163-025-00548-2
    • Vancouver

      Araujo PN de, Nakasato JC, Pereira MC. A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks [Internet]. Revista Matemática Complutense. 2025 ; 1-41.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s13163-025-00548-2
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: OPERADORES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains. Journal of Differential Equations, v. 392, p. 165-208, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.017. Acesso em: 08 out. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2024). A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains. Journal of Differential Equations, 392, 165-208. doi:10.1016/j.jde.2024.02.017
    • NLM

      Nakasato JC, Pereira MC. A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains [Internet]. Journal of Differential Equations. 2024 ; 392 165-208.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.017
    • Vancouver

      Nakasato JC, Pereira MC. A reiterated homogenization problem for the p-Laplacian equation in corrugated thin domains [Internet]. Journal of Differential Equations. 2024 ; 392 165-208.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.02.017
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAMANI LUNA, Tito Luciano e CARVALHO, Alexandre Nolasco de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption. Journal of Differential Equations, v. No 2023, p. 446-475, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.07.026. Acesso em: 08 out. 2025.
    • APA

      Mamani Luna, T. L., & Carvalho, A. N. de. (2023). A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption. Journal of Differential Equations, No 2023, 446-475. doi:10.1016/j.jde.2023.07.026
    • NLM

      Mamani Luna TL, Carvalho AN de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption [Internet]. Journal of Differential Equations. 2023 ; No 2023 446-475.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.07.026
    • Vancouver

      Mamani Luna TL, Carvalho AN de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption [Internet]. Journal of Differential Equations. 2023 ; No 2023 446-475.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.07.026
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUPERFÍCIES MÍNIMAS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GÁLVEZ, José A e MIRA, Pablo e TASSI, Marcos Paulo. A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, v. 61, n. 4, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00526-022-02222-7. Acesso em: 08 out. 2025.
    • APA

      Gálvez, J. A., Mira, P., & Tassi, M. P. (2022). A quasiconformal Hopf soap bubble theorem. Calculus of Variations and Partial Differential Equations, 61( 4), 1-20. doi:10.1007/s00526-022-02222-7
    • NLM

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
    • Vancouver

      Gálvez JA, Mira P, Tassi MP. A quasiconformal Hopf soap bubble theorem [Internet]. Calculus of Variations and Partial Differential Equations. 2022 ; 61( 4): 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00526-022-02222-7
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Nonlinear dispersive equations: classical and new frameworks. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 171-255, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-020-00195-z. Acesso em: 08 out. 2025.
    • APA

      Pava, J. A. (2022). Nonlinear dispersive equations: classical and new frameworks. São Paulo Journal of Mathematical Sciences, 16( 1), 171-255. doi:10.1007/s40863-020-00195-z
    • NLM

      Pava JA. Nonlinear dispersive equations: classical and new frameworks [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 171-255.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-020-00195-z
    • Vancouver

      Pava JA. Nonlinear dispersive equations: classical and new frameworks [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 171-255.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40863-020-00195-z
  • Source: Nonlinear Differential Equations and Applications - NoDEA. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, MÉTODOS VARIACIONAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSA, Eugenio Tommaso. Concave-convex behavior for a Kirchhoff type equation with degenerate nonautonomous coefficient. Nonlinear Differential Equations and Applications - NoDEA, v. 28, n. 6, p. 1-24, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00030-021-00718-3. Acesso em: 08 out. 2025.
    • APA

      Massa, E. T. (2021). Concave-convex behavior for a Kirchhoff type equation with degenerate nonautonomous coefficient. Nonlinear Differential Equations and Applications - NoDEA, 28( 6), 1-24. doi:10.1007/s00030-021-00718-3
    • NLM

      Massa ET. Concave-convex behavior for a Kirchhoff type equation with degenerate nonautonomous coefficient [Internet]. Nonlinear Differential Equations and Applications - NoDEA. 2021 ; 28( 6): 1-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00030-021-00718-3
    • Vancouver

      Massa ET. Concave-convex behavior for a Kirchhoff type equation with degenerate nonautonomous coefficient [Internet]. Nonlinear Differential Equations and Applications - NoDEA. 2021 ; 28( 6): 1-24.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00030-021-00718-3
  • Source: Contributions to nonlinear analysis: a tribute to D. G. de Figueiredo on the occasion of this 70th birthday. Conference titles: Workshop on Nonlinear Differential Equations. Unidades: IME, EACH

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Generic simplicity for the solutions of a nonlinear plate equation. 2006, Anais.. Basel: Birkhäuser, 2006. Disponível em: https://doi.org/10.1007/3-7643-7401-2_30. Acesso em: 08 out. 2025.
    • APA

      Pereira, A. L., & Pereira, M. C. (2006). Generic simplicity for the solutions of a nonlinear plate equation. In Contributions to nonlinear analysis: a tribute to D. G. de Figueiredo on the occasion of this 70th birthday. Basel: Birkhäuser. doi:10.1007/3-7643-7401-2_30
    • NLM

      Pereira AL, Pereira MC. Generic simplicity for the solutions of a nonlinear plate equation [Internet]. Contributions to nonlinear analysis: a tribute to D. G. de Figueiredo on the occasion of this 70th birthday. 2006 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/3-7643-7401-2_30
    • Vancouver

      Pereira AL, Pereira MC. Generic simplicity for the solutions of a nonlinear plate equation [Internet]. Contributions to nonlinear analysis: a tribute to D. G. de Figueiredo on the occasion of this 70th birthday. 2006 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/3-7643-7401-2_30

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025