Filtros : "Financiamento FAPESP" "EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS" "PROBLEMAS DE CONTORNO" Limpar

Filtros



Limitar por data


  • Fonte: Nonlinear Analysis. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes dos e SOARES, Sérgio Henrique Monari. Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator. Nonlinear Analysis, v. 261, p. 1-14, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.na.2025.113893. Acesso em: 08 out. 2025.
    • APA

      Santos, J. A. dos, & Soares, S. H. M. (2025). Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator. Nonlinear Analysis, 261, 1-14. doi:10.1016/j.na.2025.113893
    • NLM

      Santos JA dos, Soares SHM. Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator [Internet]. Nonlinear Analysis. 2025 ; 261 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.na.2025.113893
    • Vancouver

      Santos JA dos, Soares SHM. Lipschitz regularity of solutions to two-phase free boundary problems governed by a non-uniformly elliptic operator [Internet]. Nonlinear Analysis. 2025 ; 261 1-14.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.na.2025.113893
  • Fonte: Revista Matemática Complutense. Unidade: IME

    Assuntos: ELIPSE, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Patricia Neves de e NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks. Revista Matemática Complutense, p. 1-41, 2025Tradução . . Disponível em: https://doi.org/10.1007/s13163-025-00548-2. Acesso em: 08 out. 2025.
    • APA

      Araujo, P. N. de, Nakasato, J. C., & Pereira, M. C. (2025). A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks. Revista Matemática Complutense, 1-41. doi:10.1007/s13163-025-00548-2
    • NLM

      Araujo PN de, Nakasato JC, Pereira MC. A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks [Internet]. Revista Matemática Complutense. 2025 ; 1-41.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s13163-025-00548-2
    • Vancouver

      Araujo PN de, Nakasato JC, Pereira MC. A semilinear elliptic equation with homogeneous Neumann boundary conditions posed in thin domains with outward peaks [Internet]. Revista Matemática Complutense. 2025 ; 1-41.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s13163-025-00548-2
  • Fonte: Annales Fennici Mathematici. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO, OPERADORES

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Diego e SANTOS, Jefferson Abrantes dos e SOARES, Sérgio Henrique Monari. A quantitative version of the Hopf-Oleinik lemma for a quasilinear non-uniformly elliptic operator. Annales Fennici Mathematici, v. 49, n. 1, p. 337-348, 2024Tradução . . Disponível em: https://doi.org/10.54330/afm.146035. Acesso em: 08 out. 2025.
    • APA

      Moreira, D., Santos, J. A. dos, & Soares, S. H. M. (2024). A quantitative version of the Hopf-Oleinik lemma for a quasilinear non-uniformly elliptic operator. Annales Fennici Mathematici, 49( 1), 337-348. doi:10.54330/afm.146035
    • NLM

      Moreira D, Santos JA dos, Soares SHM. A quantitative version of the Hopf-Oleinik lemma for a quasilinear non-uniformly elliptic operator [Internet]. Annales Fennici Mathematici. 2024 ; 49( 1): 337-348.[citado 2025 out. 08 ] Available from: https://doi.org/10.54330/afm.146035
    • Vancouver

      Moreira D, Santos JA dos, Soares SHM. A quantitative version of the Hopf-Oleinik lemma for a quasilinear non-uniformly elliptic operator [Internet]. Annales Fennici Mathematici. 2024 ; 49( 1): 337-348.[citado 2025 out. 08 ] Available from: https://doi.org/10.54330/afm.146035
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAMANI LUNA, Tito Luciano e CARVALHO, Alexandre Nolasco de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption. Journal of Differential Equations, v. No 2023, p. 446-475, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.07.026. Acesso em: 08 out. 2025.
    • APA

      Mamani Luna, T. L., & Carvalho, A. N. de. (2023). A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption. Journal of Differential Equations, No 2023, 446-475. doi:10.1016/j.jde.2023.07.026
    • NLM

      Mamani Luna TL, Carvalho AN de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption [Internet]. Journal of Differential Equations. 2023 ; No 2023 446-475.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.07.026
    • Vancouver

      Mamani Luna TL, Carvalho AN de. A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption [Internet]. Journal of Differential Equations. 2023 ; No 2023 446-475.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.07.026
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: OPERADORES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANA, Camilo e DATTORI DA SILVA, Paulo Leandro. Solvability in the large and boundary value problems for Mizohata type operators. Results in Mathematics, v. 77, n. 2, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00025-021-01568-2. Acesso em: 08 out. 2025.
    • APA

      Campana, C., & Dattori da Silva, P. L. (2022). Solvability in the large and boundary value problems for Mizohata type operators. Results in Mathematics, 77( 2), 1-26. doi:10.1007/s00025-021-01568-2
    • NLM

      Campana C, Dattori da Silva PL. Solvability in the large and boundary value problems for Mizohata type operators [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-021-01568-2
    • Vancouver

      Campana C, Dattori da Silva PL. Solvability in the large and boundary value problems for Mizohata type operators [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-021-01568-2

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025