Filtros : "Financiamento FAPESP" "Indexado no MathSciNet" "Finite Fields and their Applications" Limpar

Filtros



Refine with date range


  • Source: Finite Fields and their Applications. Unidade: ICMC

    Subjects: CURVAS (GEOMETRIA), GEOMETRIA ALGÉBRICA, FUNÇÕES ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e KORCHMÁROS, Gábor e SPEZIALI, Pietro. Plane curves with a large linear automorphism group in characteristic p. Finite Fields and their Applications, v. 96, p. 1-37, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2024.102402. Acesso em: 08 out. 2025.
    • APA

      Borges, H., Korchmáros, G., & Speziali, P. (2024). Plane curves with a large linear automorphism group in characteristic p. Finite Fields and their Applications, 96, 1-37. doi:10.1016/j.ffa.2024.102402
    • NLM

      Borges H, Korchmáros G, Speziali P. Plane curves with a large linear automorphism group in characteristic p [Internet]. Finite Fields and their Applications. 2024 ; 96 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ffa.2024.102402
    • Vancouver

      Borges H, Korchmáros G, Speziali P. Plane curves with a large linear automorphism group in characteristic p [Internet]. Finite Fields and their Applications. 2024 ; 96 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ffa.2024.102402
  • Source: Finite Fields and their Applications. Unidade: ICMC

    Subjects: TEORIA DE GALOIS, SOMAS GAUSSIANAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, José Alves e BORGES, Herivelto e BROCHERO MARTÍNEZ, Fabio Enrique. On the number of rational points on Artin-Schreier hypersurfaces. Finite Fields and their Applications, v. 90, p. 1-25, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2023.102229. Acesso em: 08 out. 2025.
    • APA

      Oliveira, J. A., Borges, H., & Brochero Martínez, F. E. (2023). On the number of rational points on Artin-Schreier hypersurfaces. Finite Fields and their Applications, 90, 1-25. doi:10.1016/j.ffa.2023.102229
    • NLM

      Oliveira JA, Borges H, Brochero Martínez FE. On the number of rational points on Artin-Schreier hypersurfaces [Internet]. Finite Fields and their Applications. 2023 ; 90 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ffa.2023.102229
    • Vancouver

      Oliveira JA, Borges H, Brochero Martínez FE. On the number of rational points on Artin-Schreier hypersurfaces [Internet]. Finite Fields and their Applications. 2023 ; 90 1-25.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ffa.2023.102229
  • Source: Finite Fields and their Applications. Unidade: ICMC

    Assunto: CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKELIAN, Nazar e BORGES, Herivelto e SPEZIALI, Pietro. The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines. Finite Fields and their Applications, v. 73, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2021.101842. Acesso em: 08 out. 2025.
    • APA

      Arakelian, N., Borges, H., & Speziali, P. (2021). The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines. Finite Fields and their Applications, 73, 1-19. doi:10.1016/j.ffa.2021.101842
    • NLM

      Arakelian N, Borges H, Speziali P. The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines [Internet]. Finite Fields and their Applications. 2021 ; 73 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ffa.2021.101842
    • Vancouver

      Arakelian N, Borges H, Speziali P. The Hurwitz curve over a finite field and its Weierstrass points for the morphism of lines [Internet]. Finite Fields and their Applications. 2021 ; 73 1-19.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ffa.2021.101842

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025