Filtros : "Financiamento FAPESP" "Itália" "Revista Matemática Complutense" Limpar

Filtros



Refine with date range


  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, INVARIANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Bárbara Karolline de Lima e RUAS, Maria Aparecida Soares e SANTANA, Hellen. Relative Bruce-Roberts number and Chern obstruction. Revista Matemática Complutense, 2025Tradução . . Disponível em: https://doi.org/10.1007/s13163-025-00522-y. Acesso em: 07 out. 2025.
    • APA

      Pereira, B. K. de L., Ruas, M. A. S., & Santana, H. (2025). Relative Bruce-Roberts number and Chern obstruction. Revista Matemática Complutense. doi:10.1007/s13163-025-00522-y
    • NLM

      Pereira BK de L, Ruas MAS, Santana H. Relative Bruce-Roberts number and Chern obstruction [Internet]. Revista Matemática Complutense. 2025 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-025-00522-y
    • Vancouver

      Pereira BK de L, Ruas MAS, Santana H. Relative Bruce-Roberts number and Chern obstruction [Internet]. Revista Matemática Complutense. 2025 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-025-00522-y
  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, v. 35, n. 2, p. 361-413, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13163-021-00398-8. Acesso em: 07 out. 2025.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, 35( 2), 361-413. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-021-00398-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025