Filtros : "Financiamento FAPESP" "Itália" "Indexado no Zentralblatt MATH" Limpar

Filtros



Refine with date range


  • Source: Revista Matematica Complutense. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, v. 36, n. 3, p. 725-747, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13163-022-00435-0. Acesso em: 07 out. 2025.
    • APA

      Lappicy, P. (2023). Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, 36( 3), 725-747. doi:10.1007/s13163-022-00435-0
    • NLM

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
    • Vancouver

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, v. 35, n. 2, p. 361-413, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13163-021-00398-8. Acesso em: 07 out. 2025.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, 35( 2), 361-413. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
  • Source: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRANDER, David e TARI, Farid. Wave maps and constant curvature surfaces: singularities and bifurcations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, v. XXIII, n. 1, p. 361-397, 2022Tradução . . Disponível em: https://doi.org/10.2422/2036-2145.202002_008. Acesso em: 07 out. 2025.
    • APA

      Brander, D., & Tari, F. (2022). Wave maps and constant curvature surfaces: singularities and bifurcations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, XXIII( 1), 361-397. doi:10.2422/2036-2145.202002_008
    • NLM

      Brander D, Tari F. Wave maps and constant curvature surfaces: singularities and bifurcations [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2022 ; XXIII( 1): 361-397.[citado 2025 out. 07 ] Available from: https://doi.org/10.2422/2036-2145.202002_008
    • Vancouver

      Brander D, Tari F. Wave maps and constant curvature surfaces: singularities and bifurcations [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2022 ; XXIII( 1): 361-397.[citado 2025 out. 07 ] Available from: https://doi.org/10.2422/2036-2145.202002_008
  • Source: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas. Unidade: ICMC

    Subjects: CARDINAIS COMO INVARIANTES TOPOLÓGICOS, ESPAÇOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e BELLA, Angelo e SPADARO, Santi. Cardinal estimates involving the weak Lindelöf game. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas, v. 116, n. Ja 2022, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13398-021-01141-0. Acesso em: 07 out. 2025.
    • APA

      Aurichi, L. F., Bella, A., & Spadaro, S. (2022). Cardinal estimates involving the weak Lindelöf game. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas, 116( Ja 2022), 1-10. doi:10.1007/s13398-021-01141-0
    • NLM

      Aurichi LF, Bella A, Spadaro S. Cardinal estimates involving the weak Lindelöf game [Internet]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas. 2022 ; 116( Ja 2022): 1-10.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13398-021-01141-0
    • Vancouver

      Aurichi LF, Bella A, Spadaro S. Cardinal estimates involving the weak Lindelöf game [Internet]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas. 2022 ; 116( Ja 2022): 1-10.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13398-021-01141-0
  • Source: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. Unidade: ICMC

    Subjects: TOPOLOGIA DIFERENCIAL, SINGULARIDADES, GEOMETRIA DIFERENCIAL CLÁSSICA, TEORIA DAS SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIUL, Pedro Benedini e RUAS, Maria Aparecida Soares e SACRAMENTO, Andrea de Jesus. Singular 3-manifolds in R⁵. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, v. 116, n. Ja 2022, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13398-021-01198-x. Acesso em: 07 out. 2025.
    • APA

      Riul, P. B., Ruas, M. A. S., & Sacramento, A. de J. (2022). Singular 3-manifolds in R⁵. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 116( Ja 2022), 1-18. doi:10.1007/s13398-021-01198-x
    • NLM

      Riul PB, Ruas MAS, Sacramento A de J. Singular 3-manifolds in R⁵ [Internet]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 2022 ; 116( Ja 2022): 1-18.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13398-021-01198-x
    • Vancouver

      Riul PB, Ruas MAS, Sacramento A de J. Singular 3-manifolds in R⁵ [Internet]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 2022 ; 116( Ja 2022): 1-18.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s13398-021-01198-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025