Filtros : "2013" "Financiamento Russian Foundation for Basic Research" Removido: "FAPESP" Limpar

Filtros



Refine with date range


  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, v. 23, n. 2, p. 407-431, 2013Tradução . . Disponível em: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf. Acesso em: 04 jul. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, 23( 2), 407-431. Recuperado de https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • NLM

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 jul. 04 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 jul. 04 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
  • Source: Advances in Mathematical Physics. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, FLUXO TURBULENTO DOS FLUÍDOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, V. N e GRICHKOV, Alexandre e OBERLACK, M. The extended symmetry Lie algebra and the asymptotic expansion of the transversal correlation function for the isotropic turbulence. Advances in Mathematical Physics, 2013Tradução . . Disponível em: https://doi.org/10.1155/2013/469654. Acesso em: 04 jul. 2025.
    • APA

      Grebenev, V. N., Grichkov, A., & Oberlack, M. (2013). The extended symmetry Lie algebra and the asymptotic expansion of the transversal correlation function for the isotropic turbulence. Advances in Mathematical Physics. doi:10.1155/2013/469654
    • NLM

      Grebenev VN, Grichkov A, Oberlack M. The extended symmetry Lie algebra and the asymptotic expansion of the transversal correlation function for the isotropic turbulence [Internet]. Advances in Mathematical Physics. 2013 ;[citado 2025 jul. 04 ] Available from: https://doi.org/10.1155/2013/469654
    • Vancouver

      Grebenev VN, Grichkov A, Oberlack M. The extended symmetry Lie algebra and the asymptotic expansion of the transversal correlation function for the isotropic turbulence [Internet]. Advances in Mathematical Physics. 2013 ;[citado 2025 jul. 04 ] Available from: https://doi.org/10.1155/2013/469654
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA DIFERENCIAL, ÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e POPOV, A. A e SHESTAKOV, Ivan P. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, v. 52, n. 4, p. 277-289, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10469-013-9242-9. Acesso em: 04 jul. 2025.
    • APA

      Zhelyabin, V. N., Popov, A. A., & Shestakov, I. P. (2013). The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, 52( 4), 277-289. doi:10.1007/s10469-013-9242-9
    • NLM

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
    • Vancouver

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS NÚMEROS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPATIN, Artem A e SHESTAKOV, Ivan P. Associative nil-algebras over finite fields. International Journal of Algebra and Computation, v. 23, n. 8, p. 1881-1894, 2013Tradução . . Disponível em: https://doi.org/10.1142/S0218196713500471. Acesso em: 04 jul. 2025.
    • APA

      Lopatin, A. A., & Shestakov, I. P. (2013). Associative nil-algebras over finite fields. International Journal of Algebra and Computation, 23( 8), 1881-1894. doi:10.1142/S0218196713500471
    • NLM

      Lopatin AA, Shestakov IP. Associative nil-algebras over finite fields [Internet]. International Journal of Algebra and Computation. 2013 ; 23( 8): 1881-1894.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1142/S0218196713500471
    • Vancouver

      Lopatin AA, Shestakov IP. Associative nil-algebras over finite fields [Internet]. International Journal of Algebra and Computation. 2013 ; 23( 8): 1881-1894.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1142/S0218196713500471
  • Source: Siberian Mathematical Journal. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, Alexander P e SHESTAKOV, Ivan P. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0. Siberian Mathematical Journal, v. 54, n. 2, p. 301-316, 2013Tradução . . Disponível em: https://doi.org/10.1134/S0037446613020134. Acesso em: 04 jul. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2013). Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0. Siberian Mathematical Journal, 54( 2), 301-316. doi:10.1134/S0037446613020134
    • NLM

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0 [Internet]. Siberian Mathematical Journal. 2013 ; 54( 2): 301-316.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1134/S0037446613020134
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0 [Internet]. Siberian Mathematical Journal. 2013 ; 54( 2): 301-316.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1134/S0037446613020134
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, NÚMEROS DE FIBONACCI

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Self-similar associative algebras. Journal of Algebra, v. 390, p. 100-125, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2013.04.029. Acesso em: 04 jul. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). Self-similar associative algebras. Journal of Algebra, 390, 100-125. doi:10.1016/j.jalgebra.2013.04.029
    • NLM

      Petrogradsky V, Shestakov IP. Self-similar associative algebras [Internet]. Journal of Algebra. 2013 ; 390 100-125.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.04.029
    • Vancouver

      Petrogradsky V, Shestakov IP. Self-similar associative algebras [Internet]. Journal of Algebra. 2013 ; 390 100-125.[citado 2025 jul. 04 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.04.029

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025