Filtros : "CLUSTERS" "Indexado no Scopus" Limpar

Filtros



Limitar por data


  • Fonte: Future Generation Computer Systems. Unidade: ICMC

    Assuntos: INTERNET DAS COISAS, CLUSTERS, SEGURANÇA DE REDES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jonathan G. P et al. Enhancing IoT device security in Kubernetes: an approach adopted for network policies and the SARIK framework. Future Generation Computer Systems, v. 162, p. 1-18, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.future.2024.107485. Acesso em: 14 nov. 2024.
    • APA

      Santos, J. G. P., Rocha Filho, G. P., Meneguette, R. I., Bonacin, R., Pessin, G., & Gonçalves, V. P. (2025). Enhancing IoT device security in Kubernetes: an approach adopted for network policies and the SARIK framework. Future Generation Computer Systems, 162, 1-18. doi:10.1016/j.future.2024.107485
    • NLM

      Santos JGP, Rocha Filho GP, Meneguette RI, Bonacin R, Pessin G, Gonçalves VP. Enhancing IoT device security in Kubernetes: an approach adopted for network policies and the SARIK framework [Internet]. Future Generation Computer Systems. 2025 ; 162 1-18.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.future.2024.107485
    • Vancouver

      Santos JGP, Rocha Filho GP, Meneguette RI, Bonacin R, Pessin G, Gonçalves VP. Enhancing IoT device security in Kubernetes: an approach adopted for network policies and the SARIK framework [Internet]. Future Generation Computer Systems. 2025 ; 162 1-18.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.future.2024.107485
  • Fonte: Journal of Applied Statistics. Unidade: ICMC

    Assuntos: INFERÊNCIA BAYESIANA, MÉTODOS MCMC, CLUSTERS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAZ, Rosineide Fernando da et al. A finite mixture mixed proportion regression model for classification problems in longitudinal voting data. Journal of Applied Statistics, v. 50, n. 4, p. 871-888, 2023Tradução . . Disponível em: https://doi.org/10.1080/02664763.2021.1998392. Acesso em: 14 nov. 2024.
    • APA

      Paz, R. F. da, Bazán Guzmán, J. L., Lachos, V. H., & Dey, D. K. (2023). A finite mixture mixed proportion regression model for classification problems in longitudinal voting data. Journal of Applied Statistics, 50( 4), 871-888. doi:10.1080/02664763.2021.1998392
    • NLM

      Paz RF da, Bazán Guzmán JL, Lachos VH, Dey DK. A finite mixture mixed proportion regression model for classification problems in longitudinal voting data [Internet]. Journal of Applied Statistics. 2023 ; 50( 4): 871-888.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1080/02664763.2021.1998392
    • Vancouver

      Paz RF da, Bazán Guzmán JL, Lachos VH, Dey DK. A finite mixture mixed proportion regression model for classification problems in longitudinal voting data [Internet]. Journal of Applied Statistics. 2023 ; 50( 4): 871-888.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1080/02664763.2021.1998392
  • Fonte: Chaos. Unidade: ICMC

    Assuntos: CLUSTERS, SINCRONICIDADE

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDER, Rodrigo Malavazi et al. Emergence of chaotic cluster synchronization in heterogeneous networks. Chaos, v. 33, p. 091103-1-091103-8, 2023Tradução . . Disponível em: https://doi.org/10.1063/5.0169628. Acesso em: 14 nov. 2024.
    • APA

      Corder, R. M., Bian, Z., Pereira, T., & Montalbán, A. (2023). Emergence of chaotic cluster synchronization in heterogeneous networks. Chaos, 33, 091103-1-091103-8. doi:10.1063/5.0169628
    • NLM

      Corder RM, Bian Z, Pereira T, Montalbán A. Emergence of chaotic cluster synchronization in heterogeneous networks [Internet]. Chaos. 2023 ; 33 091103-1-091103-8.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1063/5.0169628
    • Vancouver

      Corder RM, Bian Z, Pereira T, Montalbán A. Emergence of chaotic cluster synchronization in heterogeneous networks [Internet]. Chaos. 2023 ; 33 091103-1-091103-8.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1063/5.0169628
  • Fonte: IEEE Computer Graphics and Applications. Unidade: ICMC

    Assuntos: CLUSTERS, VISUALIZAÇÃO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YUAN, Jun et al. SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level. IEEE Computer Graphics and Applications, v. 42, n. 6, p. 24-36, 2022Tradução . . Disponível em: https://doi.org/10.1109/MCG.2022.3199727. Acesso em: 14 nov. 2024.
    • APA

      Yuan, J., Chan, G. Y. -Y., Barr, B., Overton, K., Rees, K., Nonato, L. G., et al. (2022). SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level. IEEE Computer Graphics and Applications, 42( 6), 24-36. doi:10.1109/MCG.2022.3199727
    • NLM

      Yuan J, Chan GY-Y, Barr B, Overton K, Rees K, Nonato LG, Bertini E, Silva CT. SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level [Internet]. IEEE Computer Graphics and Applications. 2022 ; 42( 6): 24-36.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1109/MCG.2022.3199727
    • Vancouver

      Yuan J, Chan GY-Y, Barr B, Overton K, Rees K, Nonato LG, Bertini E, Silva CT. SUBPLEX: a Visual analytics approach to understand local model explanations at the subpopulation level [Internet]. IEEE Computer Graphics and Applications. 2022 ; 42( 6): 24-36.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1109/MCG.2022.3199727
  • Fonte: Applied Sciences. Unidade: ICMC

    Assuntos: NOTA FISCAL ELETRÔNICA, REDES NEURAIS, CLUSTERS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHULTE , Johannes Peter et al. ELINAC: autoencoder approach for electronic invoices data clustering. Applied Sciences, v. 12, n. 6, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.3390/app12063008. Acesso em: 14 nov. 2024.
    • APA

      Schulte , J. P., Giuntini, F. T., Nobre, R. A., Nascimento, K. C., Meneguette, R. I., Li, W., et al. (2022). ELINAC: autoencoder approach for electronic invoices data clustering. Applied Sciences, 12( 6), 1-19. doi:10.3390/app12063008
    • NLM

      Schulte JP, Giuntini FT, Nobre RA, Nascimento KC, Meneguette RI, Li W, Gonçalves VP, Rocha Filho GP. ELINAC: autoencoder approach for electronic invoices data clustering [Internet]. Applied Sciences. 2022 ; 12( 6): 1-19.[citado 2024 nov. 14 ] Available from: https://doi.org/10.3390/app12063008
    • Vancouver

      Schulte JP, Giuntini FT, Nobre RA, Nascimento KC, Meneguette RI, Li W, Gonçalves VP, Rocha Filho GP. ELINAC: autoencoder approach for electronic invoices data clustering [Internet]. Applied Sciences. 2022 ; 12( 6): 1-19.[citado 2024 nov. 14 ] Available from: https://doi.org/10.3390/app12063008
  • Fonte: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Assuntos: CLUSTERS, ALGORITMOS ÚTEIS E ESPECÍFICOS, DISTRIBUIÇÕES (PROBABILIDADE)

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARAIVA, Erlandson Ferreira e PEREIRA, C. A. B e SUZUKI, Adriano Kamimura. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling. Journal of Statistical Computation and Simulation, v. 89, n. 15, p. 2848-2870, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2019.1643345. Acesso em: 14 nov. 2024.
    • APA

      Saraiva, E. F., Pereira, C. A. B., & Suzuki, A. K. (2019). A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling. Journal of Statistical Computation and Simulation, 89( 15), 2848-2870. doi:10.1080/00949655.2019.1643345
    • NLM

      Saraiva EF, Pereira CAB, Suzuki AK. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 15): 2848-2870.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1080/00949655.2019.1643345
    • Vancouver

      Saraiva EF, Pereira CAB, Suzuki AK. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 15): 2848-2870.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1080/00949655.2019.1643345
  • Fonte: Journal of Manufacturing Systems. Unidade: FEARP

    Assuntos: CÉLULAS DE MANUFATURA, CLUSTERS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, S. e RIBEIRO, José Francisco Ferreira e SEOK, S. C. A comparative study of similarity measures for manufacturing cell formation. Journal of Manufacturing Systems, v. 27, n. 1, p. 19-25, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmsy.2008.07.002. Acesso em: 14 nov. 2024.
    • APA

      Oliveira, S., Ribeiro, J. F. F., & Seok, S. C. (2008). A comparative study of similarity measures for manufacturing cell formation. Journal of Manufacturing Systems, 27( 1), 19-25. doi:10.1016/j.jmsy.2008.07.002
    • NLM

      Oliveira S, Ribeiro JFF, Seok SC. A comparative study of similarity measures for manufacturing cell formation [Internet]. Journal of Manufacturing Systems. 2008 ; 27( 1): 19-25.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmsy.2008.07.002
    • Vancouver

      Oliveira S, Ribeiro JFF, Seok SC. A comparative study of similarity measures for manufacturing cell formation [Internet]. Journal of Manufacturing Systems. 2008 ; 27( 1): 19-25.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmsy.2008.07.002

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024