Filtros : "Indexado no Zentralblatt MATH" "FFCLRP" Removido: "Brasil" Limpar

Filtros



Refine with date range


  • Source: Potential Analysis. Unidade: FFCLRP

    Subjects: OPERADORES PSEUDODIFERENCIAIS, ESPAÇOS DE HARDY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOEPFNER, G. e KAPP, R. e PICON, Tiago Henrique. On the continuity and compactness of pseudodifferential operators on localizable hardy spaces. Potential Analysis, v. 55, n. 3, p. 491-512, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11118-020-09866-0. Acesso em: 31 out. 2024.
    • APA

      Hoepfner, G., Kapp, R., & Picon, T. H. (2021). On the continuity and compactness of pseudodifferential operators on localizable hardy spaces. Potential Analysis, 55( 3), 491-512. doi:10.1007/s11118-020-09866-0
    • NLM

      Hoepfner G, Kapp R, Picon TH. On the continuity and compactness of pseudodifferential operators on localizable hardy spaces [Internet]. Potential Analysis. 2021 ; 55( 3): 491-512.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11118-020-09866-0
    • Vancouver

      Hoepfner G, Kapp R, Picon TH. On the continuity and compactness of pseudodifferential operators on localizable hardy spaces [Internet]. Potential Analysis. 2021 ; 55( 3): 491-512.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11118-020-09866-0
  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 31 out. 2024.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Source: Journal of Fixed Point Theory and Applications. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, PROBLEMAS DE VALORES INICIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo et al. Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, v. No 2021, n. 4, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11784-021-00901-0. Acesso em: 31 out. 2024.
    • APA

      Hernandez, E., Pierri, M., Fernandes, D., & Lisboa, L. (2021). Existence and uniqueness of solution for neutral differential equations with state-dependent delay. Journal of Fixed Point Theory and Applications, No 2021( 4), 1-14. doi:10.1007/s11784-021-00901-0
    • NLM

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
    • Vancouver

      Hernandez E, Pierri M, Fernandes D, Lisboa L. Existence and uniqueness of solution for neutral differential equations with state-dependent delay [Internet]. Journal of Fixed Point Theory and Applications. 2021 ; No 2021( 4): 1-14.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11784-021-00901-0
  • Source: Proceedings of the Royal Society of Edinburgh: Section A Mathematics. Unidade: FFCLRP

    Subjects: INTERAÇÃO FLUIDO-ESTRUTURA, CONJUNTOS ORDENADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEMETOV, Nikolai Vasilievich e MAZZUCATO, Anna L. Embeddings for the space LDpy on sets of finite perimeter. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, v. 150, p. 2442-2461, 2020Tradução . . Disponível em: https://doi.org/10.1017/prm.2019.29. Acesso em: 31 out. 2024.
    • APA

      Chemetov, N. V., & Mazzucato, A. L. (2020). Embeddings for the space LDpy on sets of finite perimeter. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 150, 2442-2461. doi:10.1017/prm.2019.29
    • NLM

      Chemetov NV, Mazzucato AL. Embeddings for the space LDpy on sets of finite perimeter [Internet]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2020 ; 150 2442-2461.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/prm.2019.29
    • Vancouver

      Chemetov NV, Mazzucato AL. Embeddings for the space LDpy on sets of finite perimeter [Internet]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2020 ; 150 2442-2461.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/prm.2019.29
  • Source: Proceedings of the American Mathematical Society. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRO-DIFERENCIAIS, SEMIGRUPOS DE OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e FERNANDES, Denis e WU, Jianhong. Well-posedness of abstract integro-differential equations with state-dependent delay. Proceedings of the American Mathematical Society, v. 148, n. 4, p. 1595-1609, 2020Tradução . . Disponível em: https://doi.org/10.1090/proc/14820. Acesso em: 31 out. 2024.
    • APA

      Morales, E. A. H., Fernandes, D., & Wu, J. (2020). Well-posedness of abstract integro-differential equations with state-dependent delay. Proceedings of the American Mathematical Society, 148( 4), 1595-1609. doi:10.1090/proc/14820
    • NLM

      Morales EAH, Fernandes D, Wu J. Well-posedness of abstract integro-differential equations with state-dependent delay [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 4): 1595-1609.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/14820
    • Vancouver

      Morales EAH, Fernandes D, Wu J. Well-posedness of abstract integro-differential equations with state-dependent delay [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 4): 1595-1609.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/14820
  • Source: Applied Mathematics and Computation. Unidades: ICMC, FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOHNER, Martin e FEDERSON, Marcia e MESQUITA, Jaqueline Godoy. Continuous dependence for impulsive functional dynamic equations involving variable time scales. Applied Mathematics and Computation, v. 221, p. 383-393, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.amc.2013.05.058. Acesso em: 31 out. 2024.
    • APA

      Bohner, M., Federson, M., & Mesquita, J. G. (2013). Continuous dependence for impulsive functional dynamic equations involving variable time scales. Applied Mathematics and Computation, 221, 383-393. doi:10.1016/j.amc.2013.05.058
    • NLM

      Bohner M, Federson M, Mesquita JG. Continuous dependence for impulsive functional dynamic equations involving variable time scales [Internet]. Applied Mathematics and Computation. 2013 ; 221 383-393.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.amc.2013.05.058
    • Vancouver

      Bohner M, Federson M, Mesquita JG. Continuous dependence for impulsive functional dynamic equations involving variable time scales [Internet]. Applied Mathematics and Computation. 2013 ; 221 383-393.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.amc.2013.05.058

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024