Source: Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. Unidade: ICMC
Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, TEORIA DA OSCILAÇÃO, INTEGRAL DE PERRON
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SILVA, Marielle Aparecida e FEDERSON, Marcia e GADOTTI, Marta Cilene. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis, v. 29, n. 2, p. 125-137, 2022Tradução . . Disponível em: https://online.watsci.org/contents2022/v29n2a.html. Acesso em: 31 out. 2024.APA
Silva, M. A., Federson, M., & Gadotti, M. C. (2022). Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis, 29( 2), 125-137. Recuperado de https://online.watsci.org/contents2022/v29n2a.htmlNLM
Silva MA, Federson M, Gadotti MC. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients [Internet]. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2022 ; 29( 2): 125-137.[citado 2024 out. 31 ] Available from: https://online.watsci.org/contents2022/v29n2a.htmlVancouver
Silva MA, Federson M, Gadotti MC. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients [Internet]. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2022 ; 29( 2): 125-137.[citado 2024 out. 31 ] Available from: https://online.watsci.org/contents2022/v29n2a.html