Filtros : "Indexado no Zentralblatt MATH" "SAIA, MARCELO JOSÉ" Removido: "Brasil" Limpar

Filtros



Refine with date range


  • Source: Publicationes Mathematicae. Unidade: ICMC

    Subjects: COBORDISMO, HOMOLOGIA, COHOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRASSELET, Jean Paul et al. Cobordism of maps of locally orientable Witt spaces. Publicationes Mathematicae, v. 94, n. 3-4, p. 299-317, 2019Tradução . . Disponível em: https://doi.org/10.5486/PMD.2019.8265. Acesso em: 31 out. 2024.
    • APA

      Brasselet, J. P., Libardi, A. K. M., Rizziolli, E. C., & Saia, M. J. (2019). Cobordism of maps of locally orientable Witt spaces. Publicationes Mathematicae, 94( 3-4), 299-317. doi:10.5486/PMD.2019.8265
    • NLM

      Brasselet JP, Libardi AKM, Rizziolli EC, Saia MJ. Cobordism of maps of locally orientable Witt spaces [Internet]. Publicationes Mathematicae. 2019 ; 94( 3-4): 299-317.[citado 2024 out. 31 ] Available from: https://doi.org/10.5486/PMD.2019.8265
    • Vancouver

      Brasselet JP, Libardi AKM, Rizziolli EC, Saia MJ. Cobordism of maps of locally orientable Witt spaces [Internet]. Publicationes Mathematicae. 2019 ; 94( 3-4): 299-317.[citado 2024 out. 31 ] Available from: https://doi.org/10.5486/PMD.2019.8265
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL AFIM, GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAIZER, Marcos e SAIA, Marcelo José e SÁNCHEZ, Luis F. Affine focal sets of codimension-2 submanifolds contained in hypersurfaces. Proceedings of the Royal Society of Edinburgh, v. 148A, n. 5, p. 995-1016, 2018Tradução . . Disponível em: https://doi.org/10.1017/S0308210518000100. Acesso em: 31 out. 2024.
    • APA

      Craizer, M., Saia, M. J., & Sánchez, L. F. (2018). Affine focal sets of codimension-2 submanifolds contained in hypersurfaces. Proceedings of the Royal Society of Edinburgh, 148A( 5), 995-1016. doi:10.1017/S0308210518000100
    • NLM

      Craizer M, Saia MJ, Sánchez LF. Affine focal sets of codimension-2 submanifolds contained in hypersurfaces [Internet]. Proceedings of the Royal Society of Edinburgh. 2018 ; 148A( 5): 995-1016.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0308210518000100
    • Vancouver

      Craizer M, Saia MJ, Sánchez LF. Affine focal sets of codimension-2 submanifolds contained in hypersurfaces [Internet]. Proceedings of the Royal Society of Edinburgh. 2018 ; 148A( 5): 995-1016.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0308210518000100
  • Source: Journal of the Mathematical Society of Japan. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAIZER, Marcos e SAIA, Marcelo José e SÁNCHEZ, Luis F. Equiaffine Darboux frames for codimension 2 submanifolds contained in hypersurfaces. Journal of the Mathematical Society of Japan, v. 69, n. 4, p. 1331-1352, 2017Tradução . . Disponível em: https://doi.org/10.2969/jmsj/06941331. Acesso em: 31 out. 2024.
    • APA

      Craizer, M., Saia, M. J., & Sánchez, L. F. (2017). Equiaffine Darboux frames for codimension 2 submanifolds contained in hypersurfaces. Journal of the Mathematical Society of Japan, 69( 4), 1331-1352. doi:10.2969/jmsj/06941331
    • NLM

      Craizer M, Saia MJ, Sánchez LF. Equiaffine Darboux frames for codimension 2 submanifolds contained in hypersurfaces [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1331-1352.[citado 2024 out. 31 ] Available from: https://doi.org/10.2969/jmsj/06941331
    • Vancouver

      Craizer M, Saia MJ, Sánchez LF. Equiaffine Darboux frames for codimension 2 submanifolds contained in hypersurfaces [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1331-1352.[citado 2024 out. 31 ] Available from: https://doi.org/10.2969/jmsj/06941331
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: SINGULARIDADES, DEFORMAÇÕES DE SINGULARIDADES, TEORIA DAS SINGULARIDADES, INVARIANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRANDA, Aldício José e SOARES, Liane Mendes Feitosa e SAIA, Marcelo José. On the number of topological orbits of complex germs in K classes (xy, 'X IND. A' + 'Y IND. B'). Proceedings of the Royal Society of Edinburgh, v. 147A, n. 1, p. 205-224, 2017Tradução . . Disponível em: https://doi.org/10.1017/S0308210516000111. Acesso em: 31 out. 2024.
    • APA

      Miranda, A. J., Soares, L. M. F., & Saia, M. J. (2017). On the number of topological orbits of complex germs in K classes (xy, 'X IND. A' + 'Y IND. B'). Proceedings of the Royal Society of Edinburgh, 147A( 1), 205-224. doi:10.1017/S0308210516000111
    • NLM

      Miranda AJ, Soares LMF, Saia MJ. On the number of topological orbits of complex germs in K classes (xy, 'X IND. A' + 'Y IND. B') [Internet]. Proceedings of the Royal Society of Edinburgh. 2017 ; 147A( 1): 205-224.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0308210516000111
    • Vancouver

      Miranda AJ, Soares LMF, Saia MJ. On the number of topological orbits of complex germs in K classes (xy, 'X IND. A' + 'Y IND. B') [Internet]. Proceedings of the Royal Society of Edinburgh. 2017 ; 147A( 1): 205-224.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0308210516000111
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL AFIM, GEOMETRIA DIFERENCIAL CLÁSSICA, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NUÑO-BALLESTEROS, Juan J e SAIA, Marcelo José e SÁNCHEZ, Luis F. Affine focal points for locally strictly convex surfaces in 4-space. Results in Mathematics, v. 71, n. 1, p. 357-376, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00025-016-0606-z. Acesso em: 31 out. 2024.
    • APA

      Nuño-Ballesteros, J. J., Saia, M. J., & Sánchez, L. F. (2017). Affine focal points for locally strictly convex surfaces in 4-space. Results in Mathematics, 71( 1), 357-376. doi:10.1007/s00025-016-0606-z
    • NLM

      Nuño-Ballesteros JJ, Saia MJ, Sánchez LF. Affine focal points for locally strictly convex surfaces in 4-space [Internet]. Results in Mathematics. 2017 ; 71( 1): 357-376.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00025-016-0606-z
    • Vancouver

      Nuño-Ballesteros JJ, Saia MJ, Sánchez LF. Affine focal points for locally strictly convex surfaces in 4-space [Internet]. Results in Mathematics. 2017 ; 71( 1): 357-376.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00025-016-0606-z
  • Source: Tohoku Mathematical Journal. Unidade: ICMC

    Subjects: FIBRAÇÕES, SINGULARIDADES, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALLEJAS-BEDREGAL, Roberto et al. The Lê-Greuel formula for functions on analytic spaces. Tohoku Mathematical Journal, v. 68, n. 3, p. 439-456, 2016Tradução . . Disponível em: https://doi.org/10.2748/tmj/1474652267. Acesso em: 31 out. 2024.
    • APA

      Callejas-Bedregal, R., Morgado, M. F. Z., Saia, M. J., & Seade, J. (2016). The Lê-Greuel formula for functions on analytic spaces. Tohoku Mathematical Journal, 68( 3), 439-456. doi:10.2748/tmj/1474652267
    • NLM

      Callejas-Bedregal R, Morgado MFZ, Saia MJ, Seade J. The Lê-Greuel formula for functions on analytic spaces [Internet]. Tohoku Mathematical Journal. 2016 ; 68( 3): 439-456.[citado 2024 out. 31 ] Available from: https://doi.org/10.2748/tmj/1474652267
    • Vancouver

      Callejas-Bedregal R, Morgado MFZ, Saia MJ, Seade J. The Lê-Greuel formula for functions on analytic spaces [Internet]. Tohoku Mathematical Journal. 2016 ; 68( 3): 439-456.[citado 2024 out. 31 ] Available from: https://doi.org/10.2748/tmj/1474652267
  • Source: Hiroshima Mathematical Journal. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, João Carlos Ferreira e SAIA, Marcelo José e SOARES JÚNIOR, Carlos Humberto. 'C POT.L'-contact and 'C POT.L'-right equivalences of real semi-quasihomogeneous 'C POT.L' function germs. Hiroshima Mathematical Journal, v. 44, n. 2, p. 127-137, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.hmj/1408972903. Acesso em: 31 out. 2024.
    • APA

      Costa, J. C. F., Saia, M. J., & Soares Júnior, C. H. (2014). 'C POT.L'-contact and 'C POT.L'-right equivalences of real semi-quasihomogeneous 'C POT.L' function germs. Hiroshima Mathematical Journal, 44( 2), 127-137. Recuperado de http://projecteuclid.org/euclid.hmj/1408972903
    • NLM

      Costa JCF, Saia MJ, Soares Júnior CH. 'C POT.L'-contact and 'C POT.L'-right equivalences of real semi-quasihomogeneous 'C POT.L' function germs [Internet]. Hiroshima Mathematical Journal. 2014 ; 44( 2): 127-137.[citado 2024 out. 31 ] Available from: http://projecteuclid.org/euclid.hmj/1408972903
    • Vancouver

      Costa JCF, Saia MJ, Soares Júnior CH. 'C POT.L'-contact and 'C POT.L'-right equivalences of real semi-quasihomogeneous 'C POT.L' function germs [Internet]. Hiroshima Mathematical Journal. 2014 ; 44( 2): 127-137.[citado 2024 out. 31 ] Available from: http://projecteuclid.org/euclid.hmj/1408972903
  • Source: JP Journal of Geometry and Topology. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRANDA, A. J e RIZZIOLLI, E. C e SAIA, Marcelo José. Stable singularities of co-rank one quasi homogeneous map germs from ('C POT.N+1', 0) to ('C POT.N', 0), N=2,3. JP Journal of Geometry and Topology, v. 13, n. 2, p. 189-222, 2013Tradução . . Disponível em: http://www.pphmj.com/abstract/7642.htm. Acesso em: 31 out. 2024.
    • APA

      Miranda, A. J., Rizziolli, E. C., & Saia, M. J. (2013). Stable singularities of co-rank one quasi homogeneous map germs from ('C POT.N+1', 0) to ('C POT.N', 0), N=2,3. JP Journal of Geometry and Topology, 13( 2), 189-222. Recuperado de http://www.pphmj.com/abstract/7642.htm
    • NLM

      Miranda AJ, Rizziolli EC, Saia MJ. Stable singularities of co-rank one quasi homogeneous map germs from ('C POT.N+1', 0) to ('C POT.N', 0), N=2,3 [Internet]. JP Journal of Geometry and Topology. 2013 ; 13( 2): 189-222.[citado 2024 out. 31 ] Available from: http://www.pphmj.com/abstract/7642.htm
    • Vancouver

      Miranda AJ, Rizziolli EC, Saia MJ. Stable singularities of co-rank one quasi homogeneous map germs from ('C POT.N+1', 0) to ('C POT.N', 0), N=2,3 [Internet]. JP Journal of Geometry and Topology. 2013 ; 13( 2): 189-222.[citado 2024 out. 31 ] Available from: http://www.pphmj.com/abstract/7642.htm
  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORGADO, Michelle F. Z e SAIA, Marcelo José. On the Milnor fibre and Lê numbers of semi-weighted homogeneous arrangements. Bulletin of the Brazilian Mathematical Society, v. 43, n. 4, p. 615-636, 2012Tradução . . Disponível em: https://doi.org/10.1007/s00574-012-0029-8. Acesso em: 31 out. 2024.
    • APA

      Morgado, M. F. Z., & Saia, M. J. (2012). On the Milnor fibre and Lê numbers of semi-weighted homogeneous arrangements. Bulletin of the Brazilian Mathematical Society, 43( 4), 615-636. doi:10.1007/s00574-012-0029-8
    • NLM

      Morgado MFZ, Saia MJ. On the Milnor fibre and Lê numbers of semi-weighted homogeneous arrangements [Internet]. Bulletin of the Brazilian Mathematical Society. 2012 ; 43( 4): 615-636.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-012-0029-8
    • Vancouver

      Morgado MFZ, Saia MJ. On the Milnor fibre and Lê numbers of semi-weighted homogeneous arrangements [Internet]. Bulletin of the Brazilian Mathematical Society. 2012 ; 43( 4): 615-636.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-012-0029-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024