Filtros : "Indexado no Zentralblatt MATH" "MENCATTINI, IGOR" Removido: "Inglaterra" Limpar

Filtros



Refine with date range


  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: ÁLGEBRAS DE LIE, SISTEMAS HAMILTONIANOS, FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor e PEDRONI, Marco. Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, v. 186, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2023.104773. Acesso em: 31 out. 2024.
    • APA

      Falqui, G., Mencattini, I., & Pedroni, M. (2023). Poisson quasi-Nijenhuis deformations of the canonical PN structure. Journal of Geometry and Physics, 186, 1-10. doi:10.1016/j.geomphys.2023.104773
    • NLM

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
    • Vancouver

      Falqui G, Mencattini I, Pedroni M. Poisson quasi-Nijenhuis deformations of the canonical PN structure [Internet]. Journal of Geometry and Physics. 2023 ; 186 1-10.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2023.104773
  • Source: Selecta Mathematica : New Series. Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, TEORIA DOS GRUPOS, SISTEMAS HAMILTONIANOS, SISTEMAS LAGRANGIANOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARSIE, Alessandro et al. A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N'. Selecta Mathematica : New Series, v. 29, n. 1, p. 1-48, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00029-022-00804-z. Acesso em: 31 out. 2024.
    • APA

      Arsie, A., Lorenzoni, P., Mencattini, I., & Moroni, G. (2023). A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N'. Selecta Mathematica : New Series, 29( 1), 1-48. doi:10.1007/s00029-022-00804-z
    • NLM

      Arsie A, Lorenzoni P, Mencattini I, Moroni G. A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N' [Internet]. Selecta Mathematica : New Series. 2023 ; 29( 1): 1-48.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00029-022-00804-z
    • Vancouver

      Arsie A, Lorenzoni P, Mencattini I, Moroni G. A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of 'B IND N' [Internet]. Selecta Mathematica : New Series. 2023 ; 29( 1): 1-48.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00029-022-00804-z
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 31 out. 2024.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume e SILVA, Pryscilla. Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, v. 556, p. 547-580, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.03.018. Acesso em: 31 out. 2024.
    • APA

      Mencattini, I., Quesney, A. T. G., & Silva, P. (2020). Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, 556, 547-580. doi:10.1016/j.jalgebra.2020.03.018
    • NLM

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
    • Vancouver

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
  • Source: Mathematical Physics, Analysis and Geometry. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, GEOMETRIA SIMPLÉTICA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio et al. Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, v. 23, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11040-020-09352-4. Acesso em: 31 out. 2024.
    • APA

      Falqui, G., Mencattini, I., Ortenzi, G., & Pedroni, M. (2020). Poisson quasi-Nijenhuis manifolds and the Toda system. Mathematical Physics, Analysis and Geometry, 23( 3), Se 2020. doi:10.1007/s11040-020-09352-4
    • NLM

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
    • Vancouver

      Falqui G, Mencattini I, Ortenzi G, Pedroni M. Poisson quasi-Nijenhuis manifolds and the Toda system [Internet]. Mathematical Physics, Analysis and Geometry. 2020 ; 23( 3): Se 2020.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s11040-020-09352-4
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, GEOMETRIA, SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUI, Gregorio e MENCATTINI, Igor. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, v. 118, p. 126-137, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2016.04.023. Acesso em: 31 out. 2024.
    • APA

      Falqui, G., & Mencattini, I. (2017). Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. Journal of Geometry and Physics, 118, 126-137. doi:10.1016/j.geomphys.2016.04.023
    • NLM

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
    • Vancouver

      Falqui G, Mencattini I. Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system [Internet]. Journal of Geometry and Physics. 2017 ; 118 126-137.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2016.04.023
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL, ÁLGEBRA, GEOMETRIA ALGÉBRICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUZZO, Ugo et al. Nonabelian holomorphic Lie algebroid extensions. International Journal of Mathematics, v. 26, n. 4, p. 1550040-1-1550040-26, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0129167X15500408. Acesso em: 31 out. 2024.
    • APA

      Bruzzo, U., Mencattini, I., Rubtsov, V., & Tortella, P. (2015). Nonabelian holomorphic Lie algebroid extensions. International Journal of Mathematics, 26( 4), 1550040-1-1550040-26. doi:10.1142/S0129167X15500408
    • NLM

      Bruzzo U, Mencattini I, Rubtsov V, Tortella P. Nonabelian holomorphic Lie algebroid extensions [Internet]. International Journal of Mathematics. 2015 ; 26( 4): 1550040-1-1550040-26.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0129167X15500408
    • Vancouver

      Bruzzo U, Mencattini I, Rubtsov V, Tortella P. Nonabelian holomorphic Lie algebroid extensions [Internet]. International Journal of Mathematics. 2015 ; 26( 4): 1550040-1-1550040-26.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0129167X15500408

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024