Filtros : "Indexado no Zentralblatt MATH" "COHOMOLOGIA" Removido: "Brasil" Limpar

Filtros



Refine with date range


  • Source: Quarterly Journal of Mathematics. Unidade: ICMC

    Subjects: HOMOTOPIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IDRISSI, Najib e VIEIRA, Renato Vasconcellos. Non-formality of Voronov's swiss-cheese operads. Quarterly Journal of Mathematics, v. 75, n. 1, p. 63-95, 2024Tradução . . Disponível em: https://doi.org/10.1093/qmath/haad041. Acesso em: 31 out. 2024.
    • APA

      Idrissi, N., & Vieira, R. V. (2024). Non-formality of Voronov's swiss-cheese operads. Quarterly Journal of Mathematics, 75( 1), 63-95. doi:10.1093/qmath/haad041
    • NLM

      Idrissi N, Vieira RV. Non-formality of Voronov's swiss-cheese operads [Internet]. Quarterly Journal of Mathematics. 2024 ; 75( 1): 63-95.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haad041
    • Vancouver

      Idrissi N, Vieira RV. Non-formality of Voronov's swiss-cheese operads [Internet]. Quarterly Journal of Mathematics. 2024 ; 75( 1): 63-95.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haad041
  • Source: Algebras and Representation Theory. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, v. 26, n. 6, p. 2383-2397, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10468-022-10178-7. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., & Lima, P. H. A. A. (2023). On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, 26( 6), 2383-2397. doi:10.1007/s10468-022-10178-7
    • NLM

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de et al. Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, v. 227, n. 2, p. 1-17, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2022.107188. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., Miranda-Neto, C. B., & Schenzel, P. (2023). Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, 227( 2), 1-17. doi:10.1016/j.jpaa.2022.107188
    • NLM

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de e SANTOS, Edivaldo Lopes dos e SILVA, Nelson Antonio. On the length of cohomology spheres. Topology and its Applications, v. 293, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107569. Acesso em: 31 out. 2024.
    • APA

      Mattos, D. de, Santos, E. L. dos, & Silva, N. A. (2021). On the length of cohomology spheres. Topology and its Applications, 293, 1-11. doi:10.1016/j.topol.2020.107569
    • NLM

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
    • Vancouver

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
  • Source: Mathematica Scandinavica. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. Asymptotic behavior of j-multiplicities. Mathematica Scandinavica, v. 127, n. 2, p. 209-222, 2021Tradução . . Disponível em: https://doi.org/10.7146/math.scand.a-126029. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., & Lima, P. H. A. A. (2021). Asymptotic behavior of j-multiplicities. Mathematica Scandinavica, 127( 2), 209-222. doi:10.7146/math.scand.a-126029
    • NLM

      Freitas TH de, Jorge Pérez VH, Lima PHAA. Asymptotic behavior of j-multiplicities [Internet]. Mathematica Scandinavica. 2021 ; 127( 2): 209-222.[citado 2024 out. 31 ] Available from: https://doi.org/10.7146/math.scand.a-126029
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Lima PHAA. Asymptotic behavior of j-multiplicities [Internet]. Mathematica Scandinavica. 2021 ; 127( 2): 209-222.[citado 2024 out. 31 ] Available from: https://doi.org/10.7146/math.scand.a-126029
  • Source: Bulletin of the Belgian Mathematical Society - Simon Stevin. Unidade: ICMC

    Subjects: COHOMOLOGIA, ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo. On shifted principles of generalized local cohomology modules. Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 27, n. 2, p. 203-218, 2020Tradução . . Disponível em: https://doi.org/10.36045/bbms/1594346415. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H. de, & Jorge Pérez, V. H. (2020). On shifted principles of generalized local cohomology modules. Bulletin of the Belgian Mathematical Society - Simon Stevin, 27( 2), 203-218. doi:10.36045/bbms/1594346415
    • NLM

      Freitas TH de, Jorge Pérez VH. On shifted principles of generalized local cohomology modules [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2020 ; 27( 2): 203-218.[citado 2024 out. 31 ] Available from: https://doi.org/10.36045/bbms/1594346415
    • Vancouver

      Freitas TH de, Jorge Pérez VH. On shifted principles of generalized local cohomology modules [Internet]. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2020 ; 27( 2): 203-218.[citado 2024 out. 31 ] Available from: https://doi.org/10.36045/bbms/1594346415
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: HOMOTOPIA, HOMOLOGIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 473-482, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.056. Acesso em: 31 out. 2024.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2020). Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, 56( 2), 473-482. doi:10.12775/TMNA.2020.056
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.056
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2020.056
  • Source: International Journal of Algebra and Computation. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e FREITAS, Thiago Henrique de. Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module. International Journal of Algebra and Computation, v. 30, n. 2, p. 379-396, 2020Tradução . . Disponível em: https://doi.org/10.1142/S0218196720500034. Acesso em: 31 out. 2024.
    • APA

      Jorge Pérez, V. H., & Freitas, T. H. de. (2020). Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module. International Journal of Algebra and Computation, 30( 2), 379-396. doi:10.1142/S0218196720500034
    • NLM

      Jorge Pérez VH, Freitas TH de. Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module [Internet]. International Journal of Algebra and Computation. 2020 ; 30( 2): 379-396.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0218196720500034
    • Vancouver

      Jorge Pérez VH, Freitas TH de. Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module [Internet]. International Journal of Algebra and Computation. 2020 ; 30( 2): 379-396.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0218196720500034
  • Source: Czechoslovak Mathematical Journal. Unidade: ICMC

    Subjects: COHOMOLOGIA, ANÉIS E ÁLGEBRAS COMUTATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago H e JORGE PÉREZ, Victor Hugo. On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals. Czechoslovak Mathematical Journal, v. 69, n. 2, p. 453-470, 2019Tradução . . Disponível em: https://doi.org/10.21136/CMJ.2018.0386-17. Acesso em: 31 out. 2024.
    • APA

      Freitas, T. H., & Jorge Pérez, V. H. (2019). On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals. Czechoslovak Mathematical Journal, 69( 2), 453-470. doi:10.21136/CMJ.2018.0386-17
    • NLM

      Freitas TH, Jorge Pérez VH. On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals [Internet]. Czechoslovak Mathematical Journal. 2019 ; 69( 2): 453-470.[citado 2024 out. 31 ] Available from: https://doi.org/10.21136/CMJ.2018.0386-17
    • Vancouver

      Freitas TH, Jorge Pérez VH. On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals [Internet]. Czechoslovak Mathematical Journal. 2019 ; 69( 2): 453-470.[citado 2024 out. 31 ] Available from: https://doi.org/10.21136/CMJ.2018.0386-17
  • Source: Publicationes Mathematicae. Unidade: ICMC

    Subjects: COBORDISMO, HOMOLOGIA, COHOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRASSELET, Jean Paul et al. Cobordism of maps of locally orientable Witt spaces. Publicationes Mathematicae, v. 94, n. 3-4, p. 299-317, 2019Tradução . . Disponível em: https://doi.org/10.5486/PMD.2019.8265. Acesso em: 31 out. 2024.
    • APA

      Brasselet, J. P., Libardi, A. K. M., Rizziolli, E. C., & Saia, M. J. (2019). Cobordism of maps of locally orientable Witt spaces. Publicationes Mathematicae, 94( 3-4), 299-317. doi:10.5486/PMD.2019.8265
    • NLM

      Brasselet JP, Libardi AKM, Rizziolli EC, Saia MJ. Cobordism of maps of locally orientable Witt spaces [Internet]. Publicationes Mathematicae. 2019 ; 94( 3-4): 299-317.[citado 2024 out. 31 ] Available from: https://doi.org/10.5486/PMD.2019.8265
    • Vancouver

      Brasselet JP, Libardi AKM, Rizziolli EC, Saia MJ. Cobordism of maps of locally orientable Witt spaces [Internet]. Publicationes Mathematicae. 2019 ; 94( 3-4): 299-317.[citado 2024 out. 31 ] Available from: https://doi.org/10.5486/PMD.2019.8265
  • Source: Journal of Algebra and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA ALGÉBRICA, COHOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHU, L. Z e JORGE PÉREZ, Victor Hugo e LIMA, P. H. Ideal transforms and local cohomology defined by a pair of ideals. Journal of Algebra and its Applications, v. 17, n. 10, p. 1850200-1-1850200-20, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219498818502006. Acesso em: 31 out. 2024.
    • APA

      Chu, L. Z., Jorge Pérez, V. H., & Lima, P. H. (2018). Ideal transforms and local cohomology defined by a pair of ideals. Journal of Algebra and its Applications, 17( 10), 1850200-1-1850200-20. doi:10.1142/S0219498818502006
    • NLM

      Chu LZ, Jorge Pérez VH, Lima PH. Ideal transforms and local cohomology defined by a pair of ideals [Internet]. Journal of Algebra and its Applications. 2018 ; 17( 10): 1850200-1-1850200-20.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0219498818502006
    • Vancouver

      Chu LZ, Jorge Pérez VH, Lima PH. Ideal transforms and local cohomology defined by a pair of ideals [Internet]. Journal of Algebra and its Applications. 2018 ; 17( 10): 1850200-1-1850200-20.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0219498818502006

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024