Filtros : "Mathematics of Computation" Removido: "PROGRAMAÇÃO MATEMÁTICA" Limpar

Filtros



Refine with date range


  • Source: Mathematics of Computation. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e LAURAIN, Antoine e MENEZES, Tiago da Costa. Sensitivity analysis and tailored design of minimization diagrams. Mathematics of Computation, v. 92, p. 2715-2768, 2023Tradução . . Disponível em: https://doi.org/10.1090/mcom/3839. Acesso em: 20 nov. 2025.
    • APA

      Birgin, E. J. G., Laurain, A., & Menezes, T. da C. (2023). Sensitivity analysis and tailored design of minimization diagrams. Mathematics of Computation, 92, 2715-2768. doi:10.1090/mcom/3839
    • NLM

      Birgin EJG, Laurain A, Menezes T da C. Sensitivity analysis and tailored design of minimization diagrams [Internet]. Mathematics of Computation. 2023 ; 92 2715-2768.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/mcom/3839
    • Vancouver

      Birgin EJG, Laurain A, Menezes T da C. Sensitivity analysis and tailored design of minimization diagrams [Internet]. Mathematics of Computation. 2023 ; 92 2715-2768.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/mcom/3839
  • Source: Mathematics of Computation. Unidade: IME

    Subjects: GEOMETRIA, TEORIA DOS NÚMEROS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOLPAKOV, Alexander e ROBINS, Sinai. Spherical tetrahedra with rational volume, and spherical Pythagorean triples. Mathematics of Computation, v. 89, p. 2031-2046, 2020Tradução . . Disponível em: https://doi.org/10.1090/mcom/3496. Acesso em: 20 nov. 2025.
    • APA

      Kolpakov, A., & Robins, S. (2020). Spherical tetrahedra with rational volume, and spherical Pythagorean triples. Mathematics of Computation, 89, 2031-2046. doi:10.1090/mcom/3496
    • NLM

      Kolpakov A, Robins S. Spherical tetrahedra with rational volume, and spherical Pythagorean triples [Internet]. Mathematics of Computation. 2020 ; 89 2031-2046.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/mcom/3496
    • Vancouver

      Kolpakov A, Robins S. Spherical tetrahedra with rational volume, and spherical Pythagorean triples [Internet]. Mathematics of Computation. 2020 ; 89 2031-2046.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/mcom/3496
  • Source: Mathematics of Computation. Unidades: IME, EACH

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JESPERS, Eric et al. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, v. 84, n. 293, p. 1489-1520, 2015Tradução . . Disponível em: https://doi.org/10.1090/S0025-5718-2014-02865-2. Acesso em: 20 nov. 2025.
    • APA

      Jespers, E., Juriaans, O. S., Kiefer, A., Silva, A. de A. e, & Souza Filho, A. C. de. (2015). From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, 84( 293), 1489-1520. doi:10.1090/S0025-5718-2014-02865-2
    • NLM

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups [Internet]. Mathematics of Computation. 2015 ; 84( 293): 1489-1520.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/S0025-5718-2014-02865-2
    • Vancouver

      Jespers E, Juriaans OS, Kiefer A, Silva A de A e, Souza Filho AC de. From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups [Internet]. Mathematics of Computation. 2015 ; 84( 293): 1489-1520.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/S0025-5718-2014-02865-2
  • Source: Mathematics of Computation. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, M. H e MENEGATTO, Valdir Antônio. Eigenvalue decay of positive integral operators on the sphere. Mathematics of Computation, v. 81, n. 280, p. 2303-2317, 2012Tradução . . Disponível em: https://doi.org/10.1090/S0025-5718-2012-02595-6. Acesso em: 20 nov. 2025.
    • APA

      Castro, M. H., & Menegatto, V. A. (2012). Eigenvalue decay of positive integral operators on the sphere. Mathematics of Computation, 81( 280), 2303-2317. doi:10.1090/S0025-5718-2012-02595-6
    • NLM

      Castro MH, Menegatto VA. Eigenvalue decay of positive integral operators on the sphere [Internet]. Mathematics of Computation. 2012 ; 81( 280): 2303-2317.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/S0025-5718-2012-02595-6
    • Vancouver

      Castro MH, Menegatto VA. Eigenvalue decay of positive integral operators on the sphere [Internet]. Mathematics of Computation. 2012 ; 81( 280): 2303-2317.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1090/S0025-5718-2012-02595-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025