Filtros : "Communications in Nonlinear Science and Numerical Simulation" "IF-FAP" Removido: "2012" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: SISTEMAS HAMILTONIANOS, CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAZAROTTO, Matheus Jean e CALDAS, Iberê Luiz e ELSKENS, Yves. Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, v. 112, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2022.106525. Acesso em: 29 nov. 2025.
    • APA

      Lazarotto, M. J., Caldas, I. L., & Elskens, Y. (2022). Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, 112. doi:10.1016/j.cnsns.2022.106525
    • NLM

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
    • Vancouver

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, BIOFÍSICA, GLIOMA, QUIMIOTERAPIA, NEOPLASIAS CEREBRAIS, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TROBIA, José et al. Mathematical model of brain tumour growth with drug resistance. Communications in Nonlinear Science and Numerical Simulation, v. 103, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2021.106013. Acesso em: 29 nov. 2025.
    • APA

      Trobia, J., Tian, K., Batista, A., Grebogi, C., Ren, H. -P., Santos, M. S., et al. (2021). Mathematical model of brain tumour growth with drug resistance. Communications in Nonlinear Science and Numerical Simulation, 103. doi:10.1016/j.cnsns.2021.106013
    • NLM

      Trobia J, Tian K, Batista A, Grebogi C, Ren H-P, Santos MS, Protachevicz RP, Borges FS, Szezech JD, Viana RL, Caldas IL, Iarosz KC. Mathematical model of brain tumour growth with drug resistance [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 103[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2021.106013
    • Vancouver

      Trobia J, Tian K, Batista A, Grebogi C, Ren H-P, Santos MS, Protachevicz RP, Borges FS, Szezech JD, Viana RL, Caldas IL, Iarosz KC. Mathematical model of brain tumour growth with drug resistance [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 103[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2021.106013
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÍSICA DE PLASMAS, DINÂMICA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PALMERO, Matheus S. et al. Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis. Communications in Nonlinear Science and Numerical Simulation, v. 65, p. 248-259, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2018.05.024. Acesso em: 29 nov. 2025.
    • APA

      Palmero, M. S., Livorati, A. L. P., Leonel, E. D., & Caldas, I. L. (2018). Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis. Communications in Nonlinear Science and Numerical Simulation, 65, 248-259. doi:10.1016/j.cnsns.2018.05.024
    • NLM

      Palmero MS, Livorati ALP, Leonel ED, Caldas IL. Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2018 ; 65 248-259.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2018.05.024
    • Vancouver

      Palmero MS, Livorati ALP, Leonel ED, Caldas IL. Ensemble separation and stickiness influence in a driven stadium-like billiard: a lyapunov exponents analysis [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2018 ; 65 248-259.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2018.05.024
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÉRMIO, CAOS (SISTEMAS DINÂMICOS)

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIVORATI, Andre L. P. et al. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model. Communications in Nonlinear Science and Numerical Simulation, v. fe 2017, p. 225-236, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2017.07.010. Acesso em: 29 nov. 2025.
    • APA

      Livorati, A. L. P., Palmero, M. S., Diaz, G., Leonel, E. D., Dettmann, C. P., & Caldas, I. L. (2017). Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model. Communications in Nonlinear Science and Numerical Simulation, fe 2017, 225-236. doi:10.1016/j.cnsns.2017.07.010
    • NLM

      Livorati ALP, Palmero MS, Diaz G, Leonel ED, Dettmann CP, Caldas IL. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2017 ; fe 2017 225-236.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2017.07.010
    • Vancouver

      Livorati ALP, Palmero MS, Diaz G, Leonel ED, Dettmann CP, Caldas IL. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi–Ulam model [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2017 ; fe 2017 225-236.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2017.07.010
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÍSICA DE PLASMAS, MECÂNICA DOS FLUÍDOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, R. R. et al. Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network. Communications in Nonlinear Science and Numerical Simulation, v. 34, p. 12-22, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2015.10.005. Acesso em: 29 nov. 2025.
    • APA

      Borges, R. R., Borges, F. S., Lameu, E. L., Batista, A. M., Viana, R. L., Sanjuan, M. A. F., et al. (2016). Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network. Communications in Nonlinear Science and Numerical Simulation, 34, 12-22. doi:10.1016/j.cnsns.2015.10.005
    • NLM

      Borges RR, Borges FS, Lameu EL, Batista AM, Viana RL, Sanjuan MAF, Iarosz KC, Caldas IL. Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 34 12-22.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2015.10.005
    • Vancouver

      Borges RR, Borges FS, Lameu EL, Batista AM, Viana RL, Sanjuan MAF, Iarosz KC, Caldas IL. Effects of the spike timing-dependent plasticity on the synchronisation in a random hodgkin–huxley neuronal network [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 34 12-22.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1016/j.cnsns.2015.10.005

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025