Filtros : "Differential Geometry and its Applications" "Indexado no ISI - Institute for Scientific Information" Limpar

Filtros



Refine with date range


  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTES, Rodrigo Ristow e VERDERESI, José Antonio. Contact angle for immersed surfaces in 'S POT. 2n+1'. Differential Geometry and its Applications, v. 25, n. 1, p. 92-100, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2006.05.004. Acesso em: 16 nov. 2025.
    • APA

      Montes, R. R., & Verderesi, J. A. (2007). Contact angle for immersed surfaces in 'S POT. 2n+1'. Differential Geometry and its Applications, 25( 1), 92-100. doi:10.1016/j.difgeo.2006.05.004
    • NLM

      Montes RR, Verderesi JA. Contact angle for immersed surfaces in 'S POT. 2n+1' [Internet]. Differential Geometry and its Applications. 2007 ; 25( 1): 92-100.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.difgeo.2006.05.004
    • Vancouver

      Montes RR, Verderesi JA. Contact angle for immersed surfaces in 'S POT. 2n+1' [Internet]. Differential Geometry and its Applications. 2007 ; 25( 1): 92-100.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.difgeo.2006.05.004
  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: MÉTRICAS INVARIANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAVALOYES, Miguel Angel e PICCIONE, Paolo. Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds. Differential Geometry and its Applications, v. 24, n. 5, p. 521-541, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2006.02.007. Acesso em: 16 nov. 2025.
    • APA

      Javaloyes, M. A., & Piccione, P. (2006). Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds. Differential Geometry and its Applications, 24( 5), 521-541. doi:10.1016/j.difgeo.2006.02.007
    • NLM

      Javaloyes MA, Piccione P. Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds [Internet]. Differential Geometry and its Applications. 2006 ; 24( 5): 521-541.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.difgeo.2006.02.007
    • Vancouver

      Javaloyes MA, Piccione P. Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds [Internet]. Differential Geometry and its Applications. 2006 ; 24( 5): 521-541.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.difgeo.2006.02.007
  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORRELLI, Vincent e GORODSKI, Claudio. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, v. 21, n. 3, p. 337-347, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2004.05.007. Acesso em: 16 nov. 2025.
    • APA

      Borrelli, V., & Gorodski, C. (2004). Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, 21( 3), 337-347. doi:10.1016/j.difgeo.2004.05.007
    • NLM

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007
    • Vancouver

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007
  • Source: Differential Geometry and its Applications. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo Alves e SOTOMAYOR, Jorge. Lines of principal curvature around umbilics and Whitney umbrellas. Differential Geometry and its Applications, v. 12, n. 3, p. 253-269, 2000Tradução . . Disponível em: https://doi.org/10.2748/tmj/1178224605. Acesso em: 16 nov. 2025.
    • APA

      Garcia, R. A., & Sotomayor, J. (2000). Lines of principal curvature around umbilics and Whitney umbrellas. Differential Geometry and its Applications, 12( 3), 253-269. doi:10.2748/tmj/1178224605
    • NLM

      Garcia RA, Sotomayor J. Lines of principal curvature around umbilics and Whitney umbrellas [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 16 ] Available from: https://doi.org/10.2748/tmj/1178224605
    • Vancouver

      Garcia RA, Sotomayor J. Lines of principal curvature around umbilics and Whitney umbrellas [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 16 ] Available from: https://doi.org/10.2748/tmj/1178224605
  • Source: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo e SOTOMAYOR, Jorge. Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, v. 12, n. 3, p. 253-269, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0926-2245(00)00015-2. Acesso em: 16 nov. 2025.
    • APA

      Garcia, R., & Sotomayor, J. (2000). Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, 12( 3), 253-269. doi:10.1016/s0926-2245(00)00015-2
    • NLM

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2
    • Vancouver

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025