Filtros : "TOPOLOGIA DINÂMICA" "Financiado pela FAPESP" Limpar

Filtros



Refine with date range


  • Source: Journal of the London Mathematical Society. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TOPOLOGIA DINÂMICA, TEORIA ERGÓDICA, PROCESSOS ESTOCÁSTICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e FREITAS, Ana Cristina Moreira e FREITAS, Jorge Milhazes. Dynamical counterexamples regarding the extremal index and the mean of the limiting cluster size distribution. Journal of the London Mathematical Society, v. 102, n. 2, p. 670-694, 2020Tradução . . Disponível em: https://doi.org/10.1112/jlms.12332. Acesso em: 28 nov. 2025.
    • APA

      Abadi, M. N., Freitas, A. C. M., & Freitas, J. M. (2020). Dynamical counterexamples regarding the extremal index and the mean of the limiting cluster size distribution. Journal of the London Mathematical Society, 102( 2), 670-694. doi:10.1112/jlms.12332
    • NLM

      Abadi MN, Freitas ACM, Freitas JM. Dynamical counterexamples regarding the extremal index and the mean of the limiting cluster size distribution [Internet]. Journal of the London Mathematical Society. 2020 ; 102( 2): 670-694.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1112/jlms.12332
    • Vancouver

      Abadi MN, Freitas ACM, Freitas JM. Dynamical counterexamples regarding the extremal index and the mean of the limiting cluster size distribution [Internet]. Journal of the London Mathematical Society. 2020 ; 102( 2): 670-694.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1112/jlms.12332
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TOPOLOGIA DINÂMICA, TRANSVERSALIDADE, EQUAÇÕES DIFERENCIAIS PARCIAIS, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, v. 269, n. 3, p. 1904-1943, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.01.024. Acesso em: 28 nov. 2025.
    • APA

      Bortolan, M. C., Cardoso, C. A. E. das N., Carvalho, A. N. de, & Pires, L. (2020). Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, 269( 3), 1904-1943. doi:10.1016/j.jde.2020.01.024
    • NLM

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024
    • Vancouver

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024
  • Source: Nonlinearity. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e FREITAS, Ana Cristina Moreira e FREITAS, Jorge Milhazes. Clustering indices and decay of correlations in non-Markovian models. Nonlinearity, v. 32, p. 4853-4870, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab37b8. Acesso em: 28 nov. 2025.
    • APA

      Abadi, M. N., Freitas, A. C. M., & Freitas, J. M. (2019). Clustering indices and decay of correlations in non-Markovian models. Nonlinearity, 32, 4853-4870. doi:10.1088/1361-6544/ab37b8
    • NLM

      Abadi MN, Freitas ACM, Freitas JM. Clustering indices and decay of correlations in non-Markovian models [Internet]. Nonlinearity. 2019 ; 32 4853-4870.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1088/1361-6544/ab37b8
    • Vancouver

      Abadi MN, Freitas ACM, Freitas JM. Clustering indices and decay of correlations in non-Markovian models [Internet]. Nonlinearity. 2019 ; 32 4853-4870.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1088/1361-6544/ab37b8
  • Source: Comptes Rendus Mathematique. Unidade: IME

    Assunto: TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e HAZARD, Peter e TRESSER, Charles. Infinite entropy is generic in Hölder and Sobolev spaces. Comptes Rendus Mathematique, v. 355, n. 11, p. 1185-1189, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.crma.2017.10.016. Acesso em: 28 nov. 2025.
    • APA

      Faria, E. de, Hazard, P., & Tresser, C. (2017). Infinite entropy is generic in Hölder and Sobolev spaces. Comptes Rendus Mathematique, 355( 11), 1185-1189. doi:10.1016/j.crma.2017.10.016
    • NLM

      Faria E de, Hazard P, Tresser C. Infinite entropy is generic in Hölder and Sobolev spaces [Internet]. Comptes Rendus Mathematique. 2017 ; 355( 11): 1185-1189.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.crma.2017.10.016
    • Vancouver

      Faria E de, Hazard P, Tresser C. Infinite entropy is generic in Hölder and Sobolev spaces [Internet]. Comptes Rendus Mathematique. 2017 ; 355( 11): 1185-1189.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.crma.2017.10.016

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025