Filtros : "Journal of Statistical Computation and Simulation" "DISTRIBUIÇÕES (PROBABILIDADE)" Removido: "ORTEGA, EDWIN MOISES MARCOS" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Computation and Simulation. Unidades: ICMC, Interinstitucional de Pós-Graduação em Estatística

    Subjects: DADOS CENSURADOS, ANÁLISE DE SOBREVIVÊNCIA, SIMULAÇÃO, DISTRIBUIÇÕES (PROBABILIDADE)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Pedro Luiz et al. Sampling with censored data: a practical guide. Journal of Statistical Computation and Simulation, v. 94, n. 18, p. 4072-4106, 2024Tradução . . Disponível em: https://doi.org/10.1080/00949655.2024.2409379. Acesso em: 28 nov. 2025.
    • APA

      Ramos, P. L., Guzman, D. C. F., Mota, A. L., Saavedra, D., Rodrigues, F. A., & Louzada, F. (2024). Sampling with censored data: a practical guide. Journal of Statistical Computation and Simulation, 94( 18), 4072-4106. doi:10.1080/00949655.2024.2409379
    • NLM

      Ramos PL, Guzman DCF, Mota AL, Saavedra D, Rodrigues FA, Louzada F. Sampling with censored data: a practical guide [Internet]. Journal of Statistical Computation and Simulation. 2024 ; 94( 18): 4072-4106.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2024.2409379
    • Vancouver

      Ramos PL, Guzman DCF, Mota AL, Saavedra D, Rodrigues FA, Louzada F. Sampling with censored data: a practical guide [Internet]. Journal of Statistical Computation and Simulation. 2024 ; 94( 18): 4072-4106.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2024.2409379
  • Source: Journal of Statistical Computation and Simulation. Unidade: IME

    Subjects: ANÁLISE DE SÉRIES TEMPORAIS, DISTRIBUIÇÕES (PROBABILIDADE)

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Moizes da Silva e ALENCAR, Airlane Pereira. Conway-Maxwell-Poisson seasonal autoregressive moving average model. Journal of Statistical Computation and Simulation, v. 92, n. 2, p. 283-299, 2022Tradução . . Disponível em: https://doi.org/10.1080/00949655.2021.1955887. Acesso em: 28 nov. 2025.
    • APA

      Melo, M. da S., & Alencar, A. P. (2022). Conway-Maxwell-Poisson seasonal autoregressive moving average model. Journal of Statistical Computation and Simulation, 92( 2), 283-299. doi:10.1080/00949655.2021.1955887
    • NLM

      Melo M da S, Alencar AP. Conway-Maxwell-Poisson seasonal autoregressive moving average model [Internet]. Journal of Statistical Computation and Simulation. 2022 ; 92( 2): 283-299.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2021.1955887
    • Vancouver

      Melo M da S, Alencar AP. Conway-Maxwell-Poisson seasonal autoregressive moving average model [Internet]. Journal of Statistical Computation and Simulation. 2022 ; 92( 2): 283-299.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2021.1955887
  • Source: Journal of Statistical Computation and Simulation. Unidade: IME

    Assunto: DISTRIBUIÇÕES (PROBABILIDADE)

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AL-SHARADQAH, Ali A. e PATRIOTA, Alexandre Galvão. On estimating the boundaries of a uniform distribution under additive measurement errors. Journal of Statistical Computation and Simulation, v. 92, n. 10, p. 2112-2140, 2022Tradução . . Disponível em: https://doi.org/10.1080/00949655.2021.2022149. Acesso em: 28 nov. 2025.
    • APA

      Al-Sharadqah, A. A., & Patriota, A. G. (2022). On estimating the boundaries of a uniform distribution under additive measurement errors. Journal of Statistical Computation and Simulation, 92( 10), 2112-2140. doi:10.1080/00949655.2021.2022149
    • NLM

      Al-Sharadqah AA, Patriota AG. On estimating the boundaries of a uniform distribution under additive measurement errors [Internet]. Journal of Statistical Computation and Simulation. 2022 ; 92( 10): 2112-2140.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2021.2022149
    • Vancouver

      Al-Sharadqah AA, Patriota AG. On estimating the boundaries of a uniform distribution under additive measurement errors [Internet]. Journal of Statistical Computation and Simulation. 2022 ; 92( 10): 2112-2140.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2021.2022149
  • Source: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Subjects: CLUSTERS, ALGORITMOS ÚTEIS E ESPECÍFICOS, DISTRIBUIÇÕES (PROBABILIDADE)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARAIVA, Erlandson Ferreira e PEREIRA, C. A. B e SUZUKI, Adriano Kamimura. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling. Journal of Statistical Computation and Simulation, v. 89, n. 15, p. 2848-2870, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2019.1643345. Acesso em: 28 nov. 2025.
    • APA

      Saraiva, E. F., Pereira, C. A. B., & Suzuki, A. K. (2019). A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling. Journal of Statistical Computation and Simulation, 89( 15), 2848-2870. doi:10.1080/00949655.2019.1643345
    • NLM

      Saraiva EF, Pereira CAB, Suzuki AK. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 15): 2848-2870.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2019.1643345
    • Vancouver

      Saraiva EF, Pereira CAB, Suzuki AK. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 15): 2848-2870.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2019.1643345
  • Source: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), VEROSSIMILHANÇA, INFERÊNCIA BAYESIANA, INFERÊNCIA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOUZADA, Francisco e RAMOS, Pedro Luiz. Efficient closed-form maximum a posteriori estimators for the gamma distribution. Journal of Statistical Computation and Simulation, v. 88, n. Ja 2018, p. 1134-1146, 2018Tradução . . Disponível em: https://doi.org/10.1080/00949655.2017.1422503. Acesso em: 28 nov. 2025.
    • APA

      Louzada, F., & Ramos, P. L. (2018). Efficient closed-form maximum a posteriori estimators for the gamma distribution. Journal of Statistical Computation and Simulation, 88( Ja 2018), 1134-1146. doi:10.1080/00949655.2017.1422503
    • NLM

      Louzada F, Ramos PL. Efficient closed-form maximum a posteriori estimators for the gamma distribution [Internet]. Journal of Statistical Computation and Simulation. 2018 ; 88( Ja 2018): 1134-1146.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2017.1422503
    • Vancouver

      Louzada F, Ramos PL. Efficient closed-form maximum a posteriori estimators for the gamma distribution [Internet]. Journal of Statistical Computation and Simulation. 2018 ; 88( Ja 2018): 1134-1146.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2017.1422503
  • Source: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Subjects: ANÁLISE DE SOBREVIVÊNCIA, DISTRIBUIÇÕES (PROBABILIDADE), ESTATÍSTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOJEIRO, Cynthia A. V et al. The complementaryWeibull geometric distribution. Journal of Statistical Computation and Simulation, v. 84, n. 6, p. 1345-1362, 2014Tradução . . Disponível em: https://doi.org/10.1080/00949655.2012.744406. Acesso em: 28 nov. 2025.
    • APA

      Tojeiro, C. A. V., Louzada, F., Roman, M., & Borges, P. (2014). The complementaryWeibull geometric distribution. Journal of Statistical Computation and Simulation, 84( 6), 1345-1362. doi:10.1080/00949655.2012.744406
    • NLM

      Tojeiro CAV, Louzada F, Roman M, Borges P. The complementaryWeibull geometric distribution [Internet]. Journal of Statistical Computation and Simulation. 2014 ; 84( 6): 1345-1362.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2012.744406
    • Vancouver

      Tojeiro CAV, Louzada F, Roman M, Borges P. The complementaryWeibull geometric distribution [Internet]. Journal of Statistical Computation and Simulation. 2014 ; 84( 6): 1345-1362.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2012.744406
  • Source: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Subjects: PROBABILIDADE GEOMÉTRICA, DISTRIBUIÇÕES (PROBABILIDADE), ANÁLISE DE SOBREVIVÊNCIA, DADOS CENSURADOS, VEROSSIMILHANÇA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOJEIRO, Cynthia et al. The complementary Weibull geometric distribution. Journal of Statistical Computation and Simulation, v. 84, n. 6, p. 1345-1362, 2014Tradução . . Disponível em: https://doi.org/10.1080/00949655.2012.744406. Acesso em: 28 nov. 2025.
    • APA

      Tojeiro, C., Louzada, F., Roman, M., & Borges, P. (2014). The complementary Weibull geometric distribution. Journal of Statistical Computation and Simulation, 84( 6), 1345-1362. doi:10.1080/00949655.2012.744406
    • NLM

      Tojeiro C, Louzada F, Roman M, Borges P. The complementary Weibull geometric distribution [Internet]. Journal of Statistical Computation and Simulation. 2014 ; 84( 6): 1345-1362.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2012.744406
    • Vancouver

      Tojeiro C, Louzada F, Roman M, Borges P. The complementary Weibull geometric distribution [Internet]. Journal of Statistical Computation and Simulation. 2014 ; 84( 6): 1345-1362.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2012.744406
  • Source: Journal of Statistical Computation and Simulation. Unidade: IME

    Assunto: DISTRIBUIÇÕES (PROBABILIDADE)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Caio L.N e BOLFARINE, Heleno e ANDRADE, Dalton Francisco de. Parameter recovery for a skew-normal IRT model under a Bayesian approach: hierarchical framework, prior and kernel sensitivity and sample size. Journal of Statistical Computation and Simulation, v. 82, n. 11, p. 1679-1699, 2012Tradução . . Disponível em: https://doi.org/10.1080/00949655.2011.591798. Acesso em: 28 nov. 2025.
    • APA

      Azevedo, C. L. N., Bolfarine, H., & Andrade, D. F. de. (2012). Parameter recovery for a skew-normal IRT model under a Bayesian approach: hierarchical framework, prior and kernel sensitivity and sample size. Journal of Statistical Computation and Simulation, 82( 11), 1679-1699. doi:10.1080/00949655.2011.591798
    • NLM

      Azevedo CLN, Bolfarine H, Andrade DF de. Parameter recovery for a skew-normal IRT model under a Bayesian approach: hierarchical framework, prior and kernel sensitivity and sample size [Internet]. Journal of Statistical Computation and Simulation. 2012 ; 82( 11): 1679-1699.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2011.591798
    • Vancouver

      Azevedo CLN, Bolfarine H, Andrade DF de. Parameter recovery for a skew-normal IRT model under a Bayesian approach: hierarchical framework, prior and kernel sensitivity and sample size [Internet]. Journal of Statistical Computation and Simulation. 2012 ; 82( 11): 1679-1699.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949655.2011.591798
  • Source: Journal of Statistical Computation and Simulation. Unidade: IME

    Assunto: DISTRIBUIÇÕES (PROBABILIDADE)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AUBIN, Elisete da Conceição Quintaneiro e CORDEIRO, Gauss Moutinho. Bartlett adjustments for two-parameter exponential family models. Journal of Statistical Computation and Simulation, v. 73, n. 11, p. 807-817, 2003Tradução . . Disponível em: https://doi.org/10.1080/00949650310001606857. Acesso em: 28 nov. 2025.
    • APA

      Aubin, E. da C. Q., & Cordeiro, G. M. (2003). Bartlett adjustments for two-parameter exponential family models. Journal of Statistical Computation and Simulation, 73( 11), 807-817. doi:10.1080/00949650310001606857
    • NLM

      Aubin E da CQ, Cordeiro GM. Bartlett adjustments for two-parameter exponential family models [Internet]. Journal of Statistical Computation and Simulation. 2003 ; 73( 11): 807-817.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949650310001606857
    • Vancouver

      Aubin E da CQ, Cordeiro GM. Bartlett adjustments for two-parameter exponential family models [Internet]. Journal of Statistical Computation and Simulation. 2003 ; 73( 11): 807-817.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949650310001606857
  • Source: Journal of Statistical Computation and Simulation. Unidade: IME

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), TESTES DE HIPÓTESES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Sílvia Lopes de Paula e URIBE OPAZO, Miguel Angel e CRIBARI NETO, Francisco. Second order asymptotics for score tests in exponential family nonlinear models. Journal of Statistical Computation and Simulation, v. 59, n. 2, p. 179-194, 1997Tradução . . Disponível em: https://doi.org/10.1080/00949659708811854. Acesso em: 28 nov. 2025.
    • APA

      Ferrari, S. L. de P., Uribe Opazo, M. A., & Cribari Neto, F. (1997). Second order asymptotics for score tests in exponential family nonlinear models. Journal of Statistical Computation and Simulation, 59( 2), 179-194. doi:10.1080/00949659708811854
    • NLM

      Ferrari SL de P, Uribe Opazo MA, Cribari Neto F. Second order asymptotics for score tests in exponential family nonlinear models [Internet]. Journal of Statistical Computation and Simulation. 1997 ; 59( 2): 179-194.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949659708811854
    • Vancouver

      Ferrari SL de P, Uribe Opazo MA, Cribari Neto F. Second order asymptotics for score tests in exponential family nonlinear models [Internet]. Journal of Statistical Computation and Simulation. 1997 ; 59( 2): 179-194.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1080/00949659708811854

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025