Filtros : "Financiamento Russian Foundation for Basic Research" "Financiamento CNPq" Removido: "Financiamento FAPESP" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIKHALEV, Alexander A. e SHESTAKOV, Ivan P. PBW-pairs of varieties of linear algebras. Communications in Algebra, v. 42, n. 2, p. 667-687, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.720867. Acesso em: 19 nov. 2025.
    • APA

      Mikhalev, A. A., & Shestakov, I. P. (2014). PBW-pairs of varieties of linear algebras. Communications in Algebra, 42( 2), 667-687. doi:10.1080/00927872.2012.720867
    • NLM

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/00927872.2012.720867
    • Vancouver

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/00927872.2012.720867
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, NÚMEROS DE FIBONACCI

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, v. 23, n. 2, p. 407-431, 2013Tradução . . Disponível em: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf. Acesso em: 19 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). On properties of the Fibonacci restricted Lie algebra. Journal of Lie Theory, 23( 2), 407-431. Recuperado de https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • NLM

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 nov. 19 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
    • Vancouver

      Petrogradsky V, Shestakov IP. On properties of the Fibonacci restricted Lie algebra [Internet]. Journal of Lie Theory. 2013 ; 23( 2): 407-431.[citado 2025 nov. 19 ] Available from: https://www.heldermann.de/JLT/JLT23/JLT232/jlt23019abs.pdf
  • Source: Advances in Applied Mathematics. Unidade: IME

    Assunto: POLINÔMIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBRUNO, Antonio e SHESTAKOV, Ivan P e ZAICEV, Mikhail. Finite-dimensional non-associative algebras and codimension growth. Advances in Applied Mathematics, v. 47, n. 1, p. 125-139, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.aam.2010.04.007. Acesso em: 19 nov. 2025.
    • APA

      Giambruno, A., Shestakov, I. P., & Zaicev, M. (2011). Finite-dimensional non-associative algebras and codimension growth. Advances in Applied Mathematics, 47( 1), 125-139. doi:10.1016/j.aam.2010.04.007
    • NLM

      Giambruno A, Shestakov IP, Zaicev M. Finite-dimensional non-associative algebras and codimension growth [Internet]. Advances in Applied Mathematics. 2011 ; 47( 1): 125-139.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.aam.2010.04.007
    • Vancouver

      Giambruno A, Shestakov IP, Zaicev M. Finite-dimensional non-associative algebras and codimension growth [Internet]. Advances in Applied Mathematics. 2011 ; 47( 1): 125-139.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.aam.2010.04.007
  • Source: Communications in Algebra. Unidade: IME

    Assunto: DIMENSÃO INFINITA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZAICEV, Mikkhail. Polynomial identities of finite dimensional simple algebras. Communications in Algebra, v. 39, n. 3, p. 929-932, 2011Tradução . . Disponível em: https://doi.org/10.1080/00927870903527600. Acesso em: 19 nov. 2025.
    • APA

      Shestakov, I. P., & Zaicev, M. (2011). Polynomial identities of finite dimensional simple algebras. Communications in Algebra, 39( 3), 929-932. doi:10.1080/00927870903527600
    • NLM

      Shestakov IP, Zaicev M. Polynomial identities of finite dimensional simple algebras [Internet]. Communications in Algebra. 2011 ; 39( 3): 929-932.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/00927870903527600
    • Vancouver

      Shestakov IP, Zaicev M. Polynomial identities of finite dimensional simple algebras [Internet]. Communications in Algebra. 2011 ; 39( 3): 929-932.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/00927870903527600
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, Alexander P e SHESTAKOV, Ivan P. Noncommutative Jordan superalgebras of degree n > 2. Algebra and Logic, v. 49, n. 1, p. 26-59, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10469-010-9077-6. Acesso em: 19 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2010). Noncommutative Jordan superalgebras of degree n > 2. Algebra and Logic, 49( 1), 26-59. doi:10.1007/s10469-010-9077-6
    • NLM

      Pozhidaev AP, Shestakov IP. Noncommutative Jordan superalgebras of degree n > 2 [Internet]. Algebra and Logic. 2010 ; 49( 1): 26-59.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10469-010-9077-6
    • Vancouver

      Pozhidaev AP, Shestakov IP. Noncommutative Jordan superalgebras of degree n > 2 [Internet]. Algebra and Logic. 2010 ; 49( 1): 26-59.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10469-010-9077-6
  • Source: Groups Geometry and Dynamics. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor M. e SHESTAKOV, Ivan P e ZELMANOV, Efim. Nil graded self-similar algebras. Groups Geometry and Dynamics, v. 4, n. 4, p. 873-900, 2010Tradução . . Disponível em: https://doi.org/10.4171/GGD/112. Acesso em: 19 nov. 2025.
    • APA

      Petrogradsky, V. M., Shestakov, I. P., & Zelmanov, E. (2010). Nil graded self-similar algebras. Groups Geometry and Dynamics, 4( 4), 873-900. doi:10.4171/GGD/112
    • NLM

      Petrogradsky VM, Shestakov IP, Zelmanov E. Nil graded self-similar algebras [Internet]. Groups Geometry and Dynamics. 2010 ; 4( 4): 873-900.[citado 2025 nov. 19 ] Available from: https://doi.org/10.4171/GGD/112
    • Vancouver

      Petrogradsky VM, Shestakov IP, Zelmanov E. Nil graded self-similar algebras [Internet]. Groups Geometry and Dynamics. 2010 ; 4( 4): 873-900.[citado 2025 nov. 19 ] Available from: https://doi.org/10.4171/GGD/112

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025