Filtros : "Financiamento Russian Foundation for Basic Research" "Financiamento CNPq" Removido: "Rússia (antiga URSS) - Federação Russa" Limpar

Filtros



Limitar por data


  • Fonte: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Assuntos: TEORIA DOS GRUPOS, LAÇOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e SABININA, Liudmila e ZELMANOV, Efim. The restricted Burnside problem for Moufang loops. Mathematical Proceedings of the Cambridge Philosophical Society, v. 173 , n. 1, p. 201-211, 2022Tradução . . Disponível em: https://doi.org/10.1017/S0305004121000517. Acesso em: 23 nov. 2025.
    • APA

      Grichkov, A., Sabinina, L., & Zelmanov, E. (2022). The restricted Burnside problem for Moufang loops. Mathematical Proceedings of the Cambridge Philosophical Society, 173 ( 1), 201-211. doi:10.1017/S0305004121000517
    • NLM

      Grichkov A, Sabinina L, Zelmanov E. The restricted Burnside problem for Moufang loops [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 ; 173 ( 1): 201-211.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1017/S0305004121000517
    • Vancouver

      Grichkov A, Sabinina L, Zelmanov E. The restricted Burnside problem for Moufang loops [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 ; 173 ( 1): 201-211.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1017/S0305004121000517
  • Fonte: Colloquium Mathematicum. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e GUZZO JÚNIOR, Henrique e KAYGORODOV, Ivan. Lie maps on alternative rings preserving idempotents. Colloquium Mathematicum, v. 166, n. 2, p. 227-238, 2021Tradução . . Disponível em: https://doi.org/10.4064/cm8195-10-2020. Acesso em: 23 nov. 2025.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Kaygorodov, I. (2021). Lie maps on alternative rings preserving idempotents. Colloquium Mathematicum, 166( 2), 227-238. doi:10.4064/cm8195-10-2020
    • NLM

      Ferreira BLM, Guzzo Júnior H, Kaygorodov I. Lie maps on alternative rings preserving idempotents [Internet]. Colloquium Mathematicum. 2021 ; 166( 2): 227-238.[citado 2025 nov. 23 ] Available from: https://doi.org/10.4064/cm8195-10-2020
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Kaygorodov I. Lie maps on alternative rings preserving idempotents [Internet]. Colloquium Mathematicum. 2021 ; 166( 2): 227-238.[citado 2025 nov. 23 ] Available from: https://doi.org/10.4064/cm8195-10-2020
  • Fonte: Journal of Algebra. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, NÚMEROS DE FIBONACCI

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Self-similar associative algebras. Journal of Algebra, v. 390, p. 100-125, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2013.04.029. Acesso em: 23 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2013). Self-similar associative algebras. Journal of Algebra, 390, 100-125. doi:10.1016/j.jalgebra.2013.04.029
    • NLM

      Petrogradsky V, Shestakov IP. Self-similar associative algebras [Internet]. Journal of Algebra. 2013 ; 390 100-125.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.04.029
    • Vancouver

      Petrogradsky V, Shestakov IP. Self-similar associative algebras [Internet]. Journal of Algebra. 2013 ; 390 100-125.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.04.029
  • Fonte: Algebras and Representation Theory. Unidade: IME

    Assuntos: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVDI, Victor e GRICHKOV, Alexandre e SICILIANO, Salvatore. Filtered multiplicative bases of restricted enveloping algebras. Algebras and Representation Theory, v. 14, n. 4, p. 601-608, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10468-009-9203-0. Acesso em: 23 nov. 2025.
    • APA

      Bovdi, V., Grichkov, A., & Siciliano, S. (2011). Filtered multiplicative bases of restricted enveloping algebras. Algebras and Representation Theory, 14( 4), 601-608. doi:10.1007/s10468-009-9203-0
    • NLM

      Bovdi V, Grichkov A, Siciliano S. Filtered multiplicative bases of restricted enveloping algebras [Internet]. Algebras and Representation Theory. 2011 ; 14( 4): 601-608.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10468-009-9203-0
    • Vancouver

      Bovdi V, Grichkov A, Siciliano S. Filtered multiplicative bases of restricted enveloping algebras [Internet]. Algebras and Representation Theory. 2011 ; 14( 4): 601-608.[citado 2025 nov. 23 ] Available from: https://doi.org/10.1007/s10468-009-9203-0

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025