Filtros : "Neural Computing and Applications" "Pessin, Gustavo" Limpar

Filtros



Limitar por data


  • Fonte: Neural Computing and Applications. Unidade: ICMC

    Assuntos: EMOÇÕES, VOZ, REDES NEURAIS, RECONHECIMENTO DE VOZ

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA FILHO, Geraldo Pereira et al. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, v. 36, p. 19939–19950, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00521-024-10249-4. Acesso em: 15 nov. 2025.
    • APA

      Rocha Filho, G. P., Meneguette, R. I., Mendonça, F. L. L. de, Enamoto, L. M., Pessin, G., & Gonçalves, V. P. (2024). Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, 36, 19939–19950. doi:10.1007/s00521-024-10249-4
    • NLM

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
    • Vancouver

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
  • Fonte: Neural Computing and Applications. Unidades: EESC, ICMC

    Assuntos: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURQUIM, Gustavo et al. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, v. 27, p. 1129-1141, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1930-z. Acesso em: 15 nov. 2025.
    • APA

      Furquim, G., Pessin, G., Faiçal, B. S., Mendiondo, E. M., & Ueyama, J. (2016). Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, 27, 1129-1141. doi:10.1007/s00521-015-1930-z
    • NLM

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s00521-015-1930-z
    • Vancouver

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s00521-015-1930-z

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025