Filtros : "CORROSÃO" "Suiça" Limpar

Filtros



Refine with date range


  • Source: Materials. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, LIGAS METÁLICAS, CORROSÃO, ENGENHARIA AERONÁUTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SACONI, Felipe et al. Experimental characterization and numerical modeling of the corrosion effect on the mechanical properties of the biodegradable magnesium alloy WE43 for orthopedic applications. Materials, v. 15, n. 20, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.3390/ma15207164. Acesso em: 13 ago. 2024.
    • APA

      Saconi, F., Hincapie Diaz, G., Vieira, A. C., & Ribeiro, M. L. (2022). Experimental characterization and numerical modeling of the corrosion effect on the mechanical properties of the biodegradable magnesium alloy WE43 for orthopedic applications. Materials, 15( 20), 1-20. doi:10.3390/ma15207164
    • NLM

      Saconi F, Hincapie Diaz G, Vieira AC, Ribeiro ML. Experimental characterization and numerical modeling of the corrosion effect on the mechanical properties of the biodegradable magnesium alloy WE43 for orthopedic applications [Internet]. Materials. 2022 ; 15( 20): 1-20.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/ma15207164
    • Vancouver

      Saconi F, Hincapie Diaz G, Vieira AC, Ribeiro ML. Experimental characterization and numerical modeling of the corrosion effect on the mechanical properties of the biodegradable magnesium alloy WE43 for orthopedic applications [Internet]. Materials. 2022 ; 15( 20): 1-20.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/ma15207164
  • Source: Hygiene. Unidades: EP, FORP, EE

    Subjects: INSTRUMENTOS CIRÚRGICOS, CORROSÃO, BIOFILMES, ESTERILIZAÇÃO DE EQUIPAMENTO ODONTOLÓGICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSÁRIO, William et al. Evaluation of the presence of biofilms in corrosive points in surgical instruments after reprocessing. Hygiene, v. 2, n. 4, p. 243-250, 2022Tradução . . Disponível em: https://doi.org/10.3390/hygiene2040022. Acesso em: 13 ago. 2024.
    • APA

      Rosário, W., Almeida, T., Andrade, B., Aoki, I. V., Silva, B. P. da, Aramayo, M., et al. (2022). Evaluation of the presence of biofilms in corrosive points in surgical instruments after reprocessing. Hygiene, 2( 4), 243-250. doi:10.3390/hygiene2040022
    • NLM

      Rosário W, Almeida T, Andrade B, Aoki IV, Silva BP da, Aramayo M, Watanabe E, Ribeiro M, Bruna CQ de M, Graziano KU. Evaluation of the presence of biofilms in corrosive points in surgical instruments after reprocessing [Internet]. Hygiene. 2022 ; 2( 4): 243-250.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/hygiene2040022
    • Vancouver

      Rosário W, Almeida T, Andrade B, Aoki IV, Silva BP da, Aramayo M, Watanabe E, Ribeiro M, Bruna CQ de M, Graziano KU. Evaluation of the presence of biofilms in corrosive points in surgical instruments after reprocessing [Internet]. Hygiene. 2022 ; 2( 4): 243-250.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/hygiene2040022
  • Source: Magnetochemistry. Unidade: IQSC

    Subjects: CORROSÃO, CAMPO MAGNÉTICO, COBRE, RESSONÂNCIA MAGNÉTICA NUCLEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MITRE, Cirlei Igreja Nascimento et al. Use of time domain nuclear magnetic resonance relaxometry to monitor the effect of magnetic field on the copper corrosion rate in real time. Magnetochemistry, 2022Tradução . . Disponível em: https://doi.org/10.3390/magnetochemistry8040040. Acesso em: 13 ago. 2024.
    • APA

      Mitre, C. I. N., Gomes, B. F., Paris, E. C., Lobo, C. M. S., Roth, C., & Colnago, L. A. (2022). Use of time domain nuclear magnetic resonance relaxometry to monitor the effect of magnetic field on the copper corrosion rate in real time. Magnetochemistry. doi:10.3390/magnetochemistry8040040
    • NLM

      Mitre CIN, Gomes BF, Paris EC, Lobo CMS, Roth C, Colnago LA. Use of time domain nuclear magnetic resonance relaxometry to monitor the effect of magnetic field on the copper corrosion rate in real time [Internet]. Magnetochemistry. 2022 ;[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/magnetochemistry8040040
    • Vancouver

      Mitre CIN, Gomes BF, Paris EC, Lobo CMS, Roth C, Colnago LA. Use of time domain nuclear magnetic resonance relaxometry to monitor the effect of magnetic field on the copper corrosion rate in real time [Internet]. Magnetochemistry. 2022 ;[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/magnetochemistry8040040
  • Source: Frontiers in Materials. Unidade: FOB

    Subjects: TITÂNIO, OSSEOINTEGRAÇÃO, CORROSÃO, ELETROQUÍMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIGUETTI, Claudia Cristina et al. Effects of titanium corrosion products on in vivo biological response: a basis for the understanding of osseointegration failures mechanisms. Frontiers in Materials, v. 8, 2021Tradução . . Disponível em: https://doi.org/10.3389/fmats.2021.651970. Acesso em: 13 ago. 2024.
    • APA

      Biguetti, C. C., Cavalla, F., Fonseca, A. C., Tabanez, A. P., Siddiqui, D. A., Wheelis, S. E., et al. (2021). Effects of titanium corrosion products on in vivo biological response: a basis for the understanding of osseointegration failures mechanisms. Frontiers in Materials, 8. doi:10.3389/fmats.2021.651970
    • NLM

      Biguetti CC, Cavalla F, Fonseca AC, Tabanez AP, Siddiqui DA, Wheelis SE, Taga R, Fakhouri WD. Effects of titanium corrosion products on in vivo biological response: a basis for the understanding of osseointegration failures mechanisms [Internet]. Frontiers in Materials. 2021 ; 8[citado 2024 ago. 13 ] Available from: https://doi.org/10.3389/fmats.2021.651970
    • Vancouver

      Biguetti CC, Cavalla F, Fonseca AC, Tabanez AP, Siddiqui DA, Wheelis SE, Taga R, Fakhouri WD. Effects of titanium corrosion products on in vivo biological response: a basis for the understanding of osseointegration failures mechanisms [Internet]. Frontiers in Materials. 2021 ; 8[citado 2024 ago. 13 ] Available from: https://doi.org/10.3389/fmats.2021.651970
  • Source: Metals and Materials International. Unidade: EP

    Subjects: CORROSÃO, AÇO CROMO

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, A. M et al. Evaluation of Palm Kernel Cake Powder (Elaeis guineensis Jacq.) as Corrosion Inhibitor for Carbon Steel in Acidic Media. Metals and Materials International, v. 27, n. 6, p. 1519-1530, 2021Tradução . . Disponível em: https://doi.org/10.1007/s12540-019-00559-x. Acesso em: 13 ago. 2024.
    • APA

      Santos, A. M., Aquino, I. P., Cotting, F., Aoki, I. V., Melo, H. G. de, & Capelossi, V. R. (2021). Evaluation of Palm Kernel Cake Powder (Elaeis guineensis Jacq.) as Corrosion Inhibitor for Carbon Steel in Acidic Media. Metals and Materials International, 27( 6), 1519-1530. doi:10.1007/s12540-019-00559-x
    • NLM

      Santos AM, Aquino IP, Cotting F, Aoki IV, Melo HG de, Capelossi VR. Evaluation of Palm Kernel Cake Powder (Elaeis guineensis Jacq.) as Corrosion Inhibitor for Carbon Steel in Acidic Media [Internet]. Metals and Materials International. 2021 ; 27( 6): 1519-1530.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1007/s12540-019-00559-x
    • Vancouver

      Santos AM, Aquino IP, Cotting F, Aoki IV, Melo HG de, Capelossi VR. Evaluation of Palm Kernel Cake Powder (Elaeis guineensis Jacq.) as Corrosion Inhibitor for Carbon Steel in Acidic Media [Internet]. Metals and Materials International. 2021 ; 27( 6): 1519-1530.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1007/s12540-019-00559-x
  • Source: Materials Chemistry and Physics. Unidade: EESC

    Subjects: MATERIAIS, MAGNÉSIO, TERRAS RARAS, CORROSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Gualter Silva et al. Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, v. 272, p. 1-12, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.matchemphys.2021.124930. Acesso em: 13 ago. 2024.
    • APA

      Pereira, G. S., Koga, G. Y., Ávila Diaz, J. A., Bittencourt, I. M., Fernandez, F., Miyazaki, M. Y., et al. (2021). Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, 272, 1-12. doi:10.1016/j.matchemphys.2021.124930
    • NLM

      Pereira GS, Koga GY, Ávila Diaz JA, Bittencourt IM, Fernandez F, Miyazaki MY, Botta WJ, Bose Filho WW. Corrosion resistance of WE43 Mg alloy in sodium chloride solution [Internet]. Materials Chemistry and Physics. 2021 ; 272 1-12.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.124930
    • Vancouver

      Pereira GS, Koga GY, Ávila Diaz JA, Bittencourt IM, Fernandez F, Miyazaki MY, Botta WJ, Bose Filho WW. Corrosion resistance of WE43 Mg alloy in sodium chloride solution [Internet]. Materials Chemistry and Physics. 2021 ; 272 1-12.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.matchemphys.2021.124930
  • Source: Metals. Unidade: EP

    Subjects: ALUMÍNIO, CORROSÃO, AERONÁUTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUEIROZ, Fernanda Martins et al. Comparison of Corrosion Resistance of the AA2524-T3 and the AA2024-T3. Metals, v. 11, n. 6, 2021Tradução . . Disponível em: https://doi.org/10.3390/met11060980. Acesso em: 13 ago. 2024.
    • APA

      Queiroz, F. M., Terada, M., Bugarin, A. de F. S., Melo, H. G. de, & Costa, I. (2021). Comparison of Corrosion Resistance of the AA2524-T3 and the AA2024-T3. Metals, 11( 6). doi:10.3390/met11060980
    • NLM

      Queiroz FM, Terada M, Bugarin A de FS, Melo HG de, Costa I. Comparison of Corrosion Resistance of the AA2524-T3 and the AA2024-T3 [Internet]. Metals. 2021 ;11( 6):[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/met11060980
    • Vancouver

      Queiroz FM, Terada M, Bugarin A de FS, Melo HG de, Costa I. Comparison of Corrosion Resistance of the AA2524-T3 and the AA2024-T3 [Internet]. Metals. 2021 ;11( 6):[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/met11060980
  • Source: Coatings. Unidade: FORP

    Subjects: MATERIAIS BIOMÉDICOS, TITÂNIO, CORROSÃO, RESISTÊNCIA DOS MATERIAIS, LIGAS METÁLICAS, BIOMATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCCHETTA, Patrizia et al. Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti alloys. Coatings, v. 11, n. 5, p. 1-32, 2021Tradução . . Disponível em: https://doi.org/10.3390/coatings11050487. Acesso em: 13 ago. 2024.
    • APA

      Bocchetta, P., Chen, L. -Y., Tardelli, J. D. C., Reis, A. C. dos, Almeraya-Calderón, F., & Leo, P. (2021). Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti alloys. Coatings, 11( 5), 1-32. doi:10.3390/coatings11050487
    • NLM

      Bocchetta P, Chen L-Y, Tardelli JDC, Reis AC dos, Almeraya-Calderón F, Leo P. Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti alloys [Internet]. Coatings. 2021 ; 11( 5): 1-32.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/coatings11050487
    • Vancouver

      Bocchetta P, Chen L-Y, Tardelli JDC, Reis AC dos, Almeraya-Calderón F, Leo P. Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti alloys [Internet]. Coatings. 2021 ; 11( 5): 1-32.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/coatings11050487
  • Source: Sensors. Unidade: ICMC

    Subjects: REDES NEURAIS, RECONHECIMENTO DE IMAGEM, MANUTENÇÃO DE AERONAVES, FUSELAGEM DE AERONAVES, CORROSÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Bruno Brandoli et al. Aircraft fuselage corrosion detection using artificial intelligence. Sensors, v. 21, p. 1-15, 2021Tradução . . Disponível em: https://doi.org/10.3390/s21124026. Acesso em: 13 ago. 2024.
    • APA

      Machado, B. B., Geus, A. R. de, Souza, J. R., Spadon, G., Soares, A., Rodrigues Junior, J. F., et al. (2021). Aircraft fuselage corrosion detection using artificial intelligence. Sensors, 21, 1-15. doi:10.3390/s21124026
    • NLM

      Machado BB, Geus AR de, Souza JR, Spadon G, Soares A, Rodrigues Junior JF, Komorowski J, Matwin S. Aircraft fuselage corrosion detection using artificial intelligence [Internet]. Sensors. 2021 ; 21 1-15.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/s21124026
    • Vancouver

      Machado BB, Geus AR de, Souza JR, Spadon G, Soares A, Rodrigues Junior JF, Komorowski J, Matwin S. Aircraft fuselage corrosion detection using artificial intelligence [Internet]. Sensors. 2021 ; 21 1-15.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3390/s21124026
  • Source: Surface and Coatings Technology. Unidade: EP

    Subjects: TITÂNIO, BIOMATERIAIS, CORROSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NASCIMENTO, João Pedro Lopes do et al. Enhancing the corrosion protection of Ti-6Al-4V alloy through reactive sputtering niobium oxide thin films. Surface and Coatings Technology, v. 428, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.surfcoat.2021.127854. Acesso em: 13 ago. 2024.
    • APA

      Nascimento, J. P. L. do, Ferreira, M. O. A., Gelamo, R. V., Scarmínio, J., Steffen, T. T., Silva, B. P. da, et al. (2021). Enhancing the corrosion protection of Ti-6Al-4V alloy through reactive sputtering niobium oxide thin films. Surface and Coatings Technology, 428, 1-11. doi:10.1016/j.surfcoat.2021.127854
    • NLM

      Nascimento JPL do, Ferreira MOA, Gelamo RV, Scarmínio J, Steffen TT, Silva BP da, Aoki IV, Santos Jr AG dos, Castro VV de, Malfatti C de F, Moreto JA. Enhancing the corrosion protection of Ti-6Al-4V alloy through reactive sputtering niobium oxide thin films [Internet]. Surface and Coatings Technology. 2021 ;428 1-11.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2021.127854
    • Vancouver

      Nascimento JPL do, Ferreira MOA, Gelamo RV, Scarmínio J, Steffen TT, Silva BP da, Aoki IV, Santos Jr AG dos, Castro VV de, Malfatti C de F, Moreto JA. Enhancing the corrosion protection of Ti-6Al-4V alloy through reactive sputtering niobium oxide thin films [Internet]. Surface and Coatings Technology. 2021 ;428 1-11.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2021.127854
  • Source: Surface & Coating Technology. Unidade: EESC

    Subjects: AÇO FERRAMENTA, CORROSÃO, DESGASTE, MATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, F. A. P. et al. On the wear and corrosion of plasma nitrided AISI H13. Surface & Coating Technology, v. 381, n. Ja 2020, p. 1-12, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.surfcoat.2019.125216. Acesso em: 13 ago. 2024.
    • APA

      Fernandes, F. A. P., Keck, S. C., Picone, C. A., & Casteletti, L. C. (2020). On the wear and corrosion of plasma nitrided AISI H13. Surface & Coating Technology, 381( Ja 2020), 1-12. doi:10.1016/j.surfcoat.2019.125216
    • NLM

      Fernandes FAP, Keck SC, Picone CA, Casteletti LC. On the wear and corrosion of plasma nitrided AISI H13 [Internet]. Surface & Coating Technology. 2020 ; 381( Ja 2020): 1-12.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2019.125216
    • Vancouver

      Fernandes FAP, Keck SC, Picone CA, Casteletti LC. On the wear and corrosion of plasma nitrided AISI H13 [Internet]. Surface & Coating Technology. 2020 ; 381( Ja 2020): 1-12.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2019.125216
  • Source: Frontiers in Materials. Unidade: EP

    Subjects: CORROSÃO, REVESTIMENTOS, RESINAS EPOXI

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COTTING, Fernando e KOEBSCH, André e AOKI, Idalina Vieira. Epoxy self-healing coating by encapsulated epoxy ester resin in poly (urea-formaldehyde-melamine) microcapsules. Frontiers in Materials, p. 1-10, 2019Tradução . . Disponível em: https://doi.org/10.3389/fmats.2019.00314. Acesso em: 13 ago. 2024.
    • APA

      Cotting, F., Koebsch, A., & Aoki, I. V. (2019). Epoxy self-healing coating by encapsulated epoxy ester resin in poly (urea-formaldehyde-melamine) microcapsules. Frontiers in Materials, 1-10. doi:10.3389/fmats.2019.00314
    • NLM

      Cotting F, Koebsch A, Aoki IV. Epoxy self-healing coating by encapsulated epoxy ester resin in poly (urea-formaldehyde-melamine) microcapsules [Internet]. Frontiers in Materials. 2019 ; 1-10.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3389/fmats.2019.00314
    • Vancouver

      Cotting F, Koebsch A, Aoki IV. Epoxy self-healing coating by encapsulated epoxy ester resin in poly (urea-formaldehyde-melamine) microcapsules [Internet]. Frontiers in Materials. 2019 ; 1-10.[citado 2024 ago. 13 ] Available from: https://doi.org/10.3389/fmats.2019.00314
  • Source: Surface & Coatings Technology. Unidade: EP

    Subjects: CORROSÃO, ANODIZAÇÃO

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTENARO, Hellen Sonego et al. Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating. Surface & Coatings Technology, v. 324, p. 438-450, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.surfcoat.2017.05.090. Acesso em: 13 ago. 2024.
    • APA

      Costenaro, H. S., Lanzutti, A., Paint, Y., Fedrizzi, L., Terada, M., Melo, H. G. de, & Olivier, M. -G. M. (2017). Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating. Surface & Coatings Technology, 324, 438-450. doi:10.1016/j.surfcoat.2017.05.090
    • NLM

      Costenaro HS, Lanzutti A, Paint Y, Fedrizzi L, Terada M, Melo HG de, Olivier M-GM. Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating [Internet]. Surface & Coatings Technology. 2017 ;324 438-450.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2017.05.090
    • Vancouver

      Costenaro HS, Lanzutti A, Paint Y, Fedrizzi L, Terada M, Melo HG de, Olivier M-GM. Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating [Internet]. Surface & Coatings Technology. 2017 ;324 438-450.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2017.05.090
  • Source: Surface & Coatings Technology. Unidade: IQSC

    Subjects: ELETROQUÍMICA, CORROSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAGOTTO, Josias Falararo et al. Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection. Surface & Coatings Technology, v. 289, p. 23–28, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.surfcoat.2016.01.046. Acesso em: 13 ago. 2024.
    • APA

      Pagotto, J. F., Recio, F. J., Motheo, A. de J., & Herrasti, P. (2016). Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection. Surface & Coatings Technology, 289, 23–28. doi:10.1016/j.surfcoat.2016.01.046
    • NLM

      Pagotto JF, Recio FJ, Motheo A de J, Herrasti P. Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection [Internet]. Surface & Coatings Technology. 2016 ;289 23–28.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2016.01.046
    • Vancouver

      Pagotto JF, Recio FJ, Motheo A de J, Herrasti P. Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection [Internet]. Surface & Coatings Technology. 2016 ;289 23–28.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2016.01.046
  • Source: Materials Science and Engineering: A. Unidade: IQSC

    Subjects: ELETROQUÍMICA, CORROSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, C. A. D. et al. Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitics tainlesss teel. Materials Science and Engineering: A, v. 650, p. 75 - 83, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.msea.2015.10.013. Acesso em: 13 ago. 2024.
    • APA

      Rodrigues, C. A. D., Bandeira, R. M., Duarte, B. B., Tremiliosi Filho, G., & Jorge Jr., A. M. (2016). Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitics tainlesss teel. Materials Science and Engineering: A, 650, 75 - 83. doi:10.1016/j.msea.2015.10.013
    • NLM

      Rodrigues CAD, Bandeira RM, Duarte BB, Tremiliosi Filho G, Jorge Jr. AM. Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitics tainlesss teel [Internet]. Materials Science and Engineering: A. 2016 ; 650 75 - 83.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.msea.2015.10.013
    • Vancouver

      Rodrigues CAD, Bandeira RM, Duarte BB, Tremiliosi Filho G, Jorge Jr. AM. Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitics tainlesss teel [Internet]. Materials Science and Engineering: A. 2016 ; 650 75 - 83.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.msea.2015.10.013
  • Source: Key Engineering Materials. Unidades: EP, IPEN

    Subjects: CORROSÃO, ALUMÍNIO, LIGAS NÃO METÁLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUGARIN, Aline de Fatima Santos et al. Localized corrosion resistance of dissimilar aluminum alloys joined by friction stir welding (FSW). Key Engineering Materials, v. 710, p. 41-46, 2016Tradução . . Disponível em: https://doi.org/10.4028/www.scientific.net/KEM.710.41. Acesso em: 13 ago. 2024.
    • APA

      Bugarin, A. de F. S., Queiroz, F. M., Terada, M., Melo, H. G. de, & Costa, I. (2016). Localized corrosion resistance of dissimilar aluminum alloys joined by friction stir welding (FSW). Key Engineering Materials, 710, 41-46. doi:10.4028/www.scientific.net/KEM.710.41
    • NLM

      Bugarin A de FS, Queiroz FM, Terada M, Melo HG de, Costa I. Localized corrosion resistance of dissimilar aluminum alloys joined by friction stir welding (FSW) [Internet]. Key Engineering Materials. 2016 ; 710 41-46.[citado 2024 ago. 13 ] Available from: https://doi.org/10.4028/www.scientific.net/KEM.710.41
    • Vancouver

      Bugarin A de FS, Queiroz FM, Terada M, Melo HG de, Costa I. Localized corrosion resistance of dissimilar aluminum alloys joined by friction stir welding (FSW) [Internet]. Key Engineering Materials. 2016 ; 710 41-46.[citado 2024 ago. 13 ] Available from: https://doi.org/10.4028/www.scientific.net/KEM.710.41
  • Source: Surface & Coatings Technology. Unidade: CENA

    Subjects: CORROSÃO, REVESTIMENTOS, QUÍMICA ANALÍTICA INSTRUMENTAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SUZANA, Ana Flávia et al. Corrosion protection of chromium-coated steel by hybrid sol-gel coatings. Surface & Coatings Technology, v. 299, p. 71–80, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.surfcoat.2016.04.075. Acesso em: 13 ago. 2024.
    • APA

      Suzana, A. F., Ferreira, E. A., Benedetti, A. V., Carvalho, H. W. P. de, Santilli, C. V., & Pulcinelli, S. H. (2016). Corrosion protection of chromium-coated steel by hybrid sol-gel coatings. Surface & Coatings Technology, 299, 71–80. doi:10.1016/j.surfcoat.2016.04.075
    • NLM

      Suzana AF, Ferreira EA, Benedetti AV, Carvalho HWP de, Santilli CV, Pulcinelli SH. Corrosion protection of chromium-coated steel by hybrid sol-gel coatings [Internet]. Surface & Coatings Technology. 2016 ; 299 71–80.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2016.04.075
    • Vancouver

      Suzana AF, Ferreira EA, Benedetti AV, Carvalho HWP de, Santilli CV, Pulcinelli SH. Corrosion protection of chromium-coated steel by hybrid sol-gel coatings [Internet]. Surface & Coatings Technology. 2016 ; 299 71–80.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2016.04.075
  • Source: Key Engineering Materials. Unidades: EP, IPEN

    Subjects: CORROSÃO, LIGAS NÃO METÁLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTENARO, Hellen Sonego et al. Corrosion Protection of AA2524 - T3 Anodized in Tartaric - Sulfuric Acid Bath and Protected with Hybrid Sol - Gel Coating. Key Engineering Materials, v. 710, p. 210-215, 2016Tradução . . Disponível em: https://doi.org/10.4028/www.scientific.net/kem.710.210. Acesso em: 13 ago. 2024.
    • APA

      Costenaro, H. S., Queiroz, F. M., Terada, M., Olivier, M. -G. M., Costa, I., & Melo, H. G. de. (2016). Corrosion Protection of AA2524 - T3 Anodized in Tartaric - Sulfuric Acid Bath and Protected with Hybrid Sol - Gel Coating. Key Engineering Materials, 710, 210-215. doi:10.4028/www.scientific.net/kem.710.210
    • NLM

      Costenaro HS, Queiroz FM, Terada M, Olivier M-GM, Costa I, Melo HG de. Corrosion Protection of AA2524 - T3 Anodized in Tartaric - Sulfuric Acid Bath and Protected with Hybrid Sol - Gel Coating [Internet]. Key Engineering Materials. 2016 ; 710 210-215.[citado 2024 ago. 13 ] Available from: https://doi.org/10.4028/www.scientific.net/kem.710.210
    • Vancouver

      Costenaro HS, Queiroz FM, Terada M, Olivier M-GM, Costa I, Melo HG de. Corrosion Protection of AA2524 - T3 Anodized in Tartaric - Sulfuric Acid Bath and Protected with Hybrid Sol - Gel Coating [Internet]. Key Engineering Materials. 2016 ; 710 210-215.[citado 2024 ago. 13 ] Available from: https://doi.org/10.4028/www.scientific.net/kem.710.210
  • Source: Surface & Coatings Technology. Unidade: EP

    Subjects: CORROSÃO, NANOPARTÍCULAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PERES, R. N. et al. Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection. Surface & Coatings Technology, v. 303, p. 372-384, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.surfcoat.2015.12.049. Acesso em: 13 ago. 2024.
    • APA

      Peres, R. N., Cardoso, E. S. F., Montemor, M. de F. G. da C., Melo, H. G. de, Benedetti, A. V., & Suegama, P. H. (2016). Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection. Surface & Coatings Technology, 303, 372-384. doi:10.1016/j.surfcoat.2015.12.049
    • NLM

      Peres RN, Cardoso ESF, Montemor M de FG da C, Melo HG de, Benedetti AV, Suegama PH. Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection [Internet]. Surface & Coatings Technology. 2016 ; 303 372-384.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2015.12.049
    • Vancouver

      Peres RN, Cardoso ESF, Montemor M de FG da C, Melo HG de, Benedetti AV, Suegama PH. Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection [Internet]. Surface & Coatings Technology. 2016 ; 303 372-384.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2015.12.049
  • Source: Surface & Coatings Technology. Unidade: IQSC

    Assunto: CORROSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, L.H.E. et al. Synthesis in phytic acid medium and application as anticorrosive coatings of polyaniline-based materials. Surface & Coatings Technology, v. 275, p. 26-31, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.surfcoat.2015.03.059. Acesso em: 13 ago. 2024.
    • APA

      Santos, L. H. E., Branco, J. S. C., Guimarães, I. S., & Motheo, A. de J. (2015). Synthesis in phytic acid medium and application as anticorrosive coatings of polyaniline-based materials. Surface & Coatings Technology, 275, 26-31. doi:10.1016/j.surfcoat.2015.03.059
    • NLM

      Santos LHE, Branco JSC, Guimarães IS, Motheo A de J. Synthesis in phytic acid medium and application as anticorrosive coatings of polyaniline-based materials [Internet]. Surface & Coatings Technology. 2015 ; 275 26-31.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2015.03.059
    • Vancouver

      Santos LHE, Branco JSC, Guimarães IS, Motheo A de J. Synthesis in phytic acid medium and application as anticorrosive coatings of polyaniline-based materials [Internet]. Surface & Coatings Technology. 2015 ; 275 26-31.[citado 2024 ago. 13 ] Available from: https://doi.org/10.1016/j.surfcoat.2015.03.059

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024