Filtros : "Structural and Multidisciplinary Optimization" "Financiamento CNPq" Removido: "SÁ, LUÍS FERNANDO NOGUEIRA DE" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: ICMC

    Subjects: MANUFATURA ADITIVA, CONDUTIVIDADE TÉRMICA, SIMULAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Maicon Ribeiro et al. A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing. Structural and Multidisciplinary Optimization, v. 67, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00158-024-03757-3. Acesso em: 05 dez. 2025.
    • APA

      Correa, M. R., Thore, C. -J., Ausas, R. F., Jakobsson, S., Haveroth, G. A., & Cuminato, J. A. (2024). A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing. Structural and Multidisciplinary Optimization, 67, 1-20. doi:10.1007/s00158-024-03757-3
    • NLM

      Correa MR, Thore C-J, Ausas RF, Jakobsson S, Haveroth GA, Cuminato JA. A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67 1-20.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-024-03757-3
    • Vancouver

      Correa MR, Thore C-J, Ausas RF, Jakobsson S, Haveroth GA, Cuminato JA. A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67 1-20.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-024-03757-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TOPOLOGIA, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANCHES, Renato Picelli et al. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, v. 65, n. 34, p. 1-34, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03118-4. Acesso em: 05 dez. 2025.
    • APA

      Sanches, R. P., Souza, E. M. de, Yamabe, P. V. M., Alonso, D. H., Ranjbarzadeh, S., Gioria, R. dos S., et al. (2022). Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, 65( 34), 1-34. doi:10.1007/s00158-021-03118-4
    • NLM

      Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
    • Vancouver

      Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: CIRCULAÇÃO SANGUÍNEA, TROMBOSE, MÉTODO DOS ELEMENTOS FINITOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, v. 65, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03251-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2022). Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, 65, 1-25. doi:10.1007/s00158-022-03251-8
    • NLM

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
    • Vancouver

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TOPOLOGIA, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Kamilla Emily Santos et al. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, v. 65, n. 337, p. 18 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03442-3. Acesso em: 05 dez. 2025.
    • APA

      Silva, K. E. S., Sivapuram, R., Ranjbarzadeh, S., Gioria, R. dos S., Silva, E. C. N., & Sanches, R. P. (2022). Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, 65( 337), 18 2022. doi:10.1007/s00158-022-03442-3
    • NLM

      Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
    • Vancouver

      Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TURBULÊNCIA, PROGRAMAÇÃO LINEAR, FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, p. 65-82, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03106-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., Sanches, R. P., & Silva, E. C. N. (2022). Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, 65-82. doi:10.1007/s00158-021-03106-8
    • NLM

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
    • Vancouver

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ADSORÇÃO, MUDANÇA DE FASE, TOPOLOGIA, GÁS NATURAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 05 dez. 2025.
    • APA

      Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
    • NLM

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
    • Vancouver

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TURBULÊNCIA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e GARCIA RODRIGUEZ, Luis Fernando e SILVA, Emílio Carlos Nelli. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, v. 64, p. 4409–4440, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03061-4. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Garcia Rodriguez, L. F., & Silva, E. C. N. (2021). Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, 64, 4409–4440. doi:10.1007/s00158-021-03061-4
    • NLM

      Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03061-4
    • Vancouver

      Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03061-4
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, FLUXO DOS FLUÍDOS, MÉTODO DOS ELEMENTOS FINITOS, HEMODIÁLISE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Topology optimization for blood flow considering a hemolysis model. Structural and Multidisciplinary Optimization, v. 63, p. 2101–2123, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02806-x. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2021). Topology optimization for blood flow considering a hemolysis model. Structural and Multidisciplinary Optimization, 63, 2101–2123. doi:10.1007/s00158-020-02806-x
    • NLM

      Alonso DH, Silva ECN. Topology optimization for blood flow considering a hemolysis model [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 63 2101–2123.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02806-x
    • Vancouver

      Alonso DH, Silva ECN. Topology optimization for blood flow considering a hemolysis model [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 63 2101–2123.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02806-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODOS TOPOLÓGICOS, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICELLI, Renato et al. Topology optimization of binary structures under design-dependent fluid-structure interaction loads. Structural and Multidisciplinary Optimization, v. 62, p. 2101–2116, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02598-0. Acesso em: 05 dez. 2025.
    • APA

      Picelli, R., Ranjbarzadeh, S., Sivapuram, R., Gioria, R. dos S., & Silva, E. C. N. (2020). Topology optimization of binary structures under design-dependent fluid-structure interaction loads. Structural and Multidisciplinary Optimization, 62, 2101–2116. doi:10.1007/s00158-020-02598-0
    • NLM

      Picelli R, Ranjbarzadeh S, Sivapuram R, Gioria R dos S, Silva ECN. Topology optimization of binary structures under design-dependent fluid-structure interaction loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2101–2116.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02598-0
    • Vancouver

      Picelli R, Ranjbarzadeh S, Sivapuram R, Gioria R dos S, Silva ECN. Topology optimization of binary structures under design-dependent fluid-structure interaction loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2101–2116.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02598-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, LUBRIFICAÇÃO, MECÂNICA DOS FLUÍDOS, FLUXO DOS FLUÍDOS, DISSIPADORES DE ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KATSUNO, Eduardo Tadashi e DANTAS, João Lucas Dozzi e SILVA, Emílio Carlos Nelli. Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, v. 62, p. 2915–2933, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02706-0. Acesso em: 05 dez. 2025.
    • APA

      Katsuno, E. T., Dantas, J. L. D., & Silva, E. C. N. (2020). Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, 62, 2915–2933. doi:10.1007/s00158-020-02706-0
    • NLM

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
    • Vancouver

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ROTOR, TURBOMOTORES, MÉTODOS TOPOLÓGICOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, L. F. N. et al. Design optimization of laminar flow machine rotors based on the topological derivative concep. Structural and Multidisciplinary Optimization, v. 56, n. 5, p. 1013–1026, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-017-1698-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N., Novotny, A. A., Romero, J. S., & Silva, E. C. N. (2017). Design optimization of laminar flow machine rotors based on the topological derivative concep. Structural and Multidisciplinary Optimization, 56( 5), 1013–1026. doi:10.1007/s00158-017-1698-0
    • NLM

      Sá LFN, Novotny AA, Romero JS, Silva ECN. Design optimization of laminar flow machine rotors based on the topological derivative concep [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 56( 5): 1013–1026.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1698-0
    • Vancouver

      Sá LFN, Novotny AA, Romero JS, Silva ECN. Design optimization of laminar flow machine rotors based on the topological derivative concep [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 56( 5): 1013–1026.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1698-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025