Filtros : "Structural and Multidisciplinary Optimization" "Financiamento CNPq" Removido: "MÉTODOS TOPOLÓGICOS" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: ICMC

    Subjects: MANUFATURA ADITIVA, CONDUTIVIDADE TÉRMICA, SIMULAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Maicon Ribeiro et al. A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing. Structural and Multidisciplinary Optimization, v. 67, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00158-024-03757-3. Acesso em: 05 dez. 2025.
    • APA

      Correa, M. R., Thore, C. -J., Ausas, R. F., Jakobsson, S., Haveroth, G. A., & Cuminato, J. A. (2024). A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing. Structural and Multidisciplinary Optimization, 67, 1-20. doi:10.1007/s00158-024-03757-3
    • NLM

      Correa MR, Thore C-J, Ausas RF, Jakobsson S, Haveroth GA, Cuminato JA. A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67 1-20.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-024-03757-3
    • Vancouver

      Correa MR, Thore C-J, Ausas RF, Jakobsson S, Haveroth GA, Cuminato JA. A transient thermoelastic mathematical model for topology optimization of support structures in additive manufacturing [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67 1-20.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-024-03757-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, ALGORITMOS, FLUXO DOS FLUÍDOS, TROCADORES DE CALOR, ROTOR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Eduardo Moscatelli de et al. Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, v. 65, p. 1-23, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03233-w. Acesso em: 05 dez. 2025.
    • APA

      Souza, E. M. de, Alonso, D. H., Sá, L. F. N. de, Sanches, R. P., & Silva, E. C. N. (2022). Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, 65, 1-23. doi:10.1007/s00158-022-03233-w
    • NLM

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
    • Vancouver

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: CIRCULAÇÃO SANGUÍNEA, TROMBOSE, MÉTODO DOS ELEMENTOS FINITOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, v. 65, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03251-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2022). Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, 65, 1-25. doi:10.1007/s00158-022-03251-8
    • NLM

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
    • Vancouver

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TURBULÊNCIA, PROGRAMAÇÃO LINEAR, FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, p. 65-82, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03106-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., Sanches, R. P., & Silva, E. C. N. (2022). Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, 65-82. doi:10.1007/s00158-021-03106-8
    • NLM

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
    • Vancouver

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ADSORÇÃO, MUDANÇA DE FASE, TOPOLOGIA, GÁS NATURAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 05 dez. 2025.
    • APA

      Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
    • NLM

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
    • Vancouver

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, LUBRIFICAÇÃO, MECÂNICA DOS FLUÍDOS, FLUXO DOS FLUÍDOS, DISSIPADORES DE ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KATSUNO, Eduardo Tadashi e DANTAS, João Lucas Dozzi e SILVA, Emílio Carlos Nelli. Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, v. 62, p. 2915–2933, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02706-0. Acesso em: 05 dez. 2025.
    • APA

      Katsuno, E. T., Dantas, J. L. D., & Silva, E. C. N. (2020). Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, 62, 2915–2933. doi:10.1007/s00158-020-02706-0
    • NLM

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
    • Vancouver

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: FLUXO LAMINAR DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES, TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, BOMBAS CENTRÍFUGAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, v. 58, p. 2341–2364, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-012-0847-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Sá, L. F. N. de, Romero Saenz, J. S., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58, 2341–2364. doi:10.1007/s00158-012-0847-8
    • NLM

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
    • Vancouver

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, VÓRTICES DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de e AMIGO, Ricardo Cesare Román e SILVA, Emílio Carlos Nelli. Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, v. 54, n. 2, p. 249–264, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1399-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Amigo, R. C. R., & Silva, E. C. N. (2016). Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, 54( 2), 249–264. doi:10.1007/s00158-016-1399-0
    • NLM

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0
    • Vancouver

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025